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Preface

There are many approaches to noncommutative geometry and its use in physics, the
operator algebra and C∗-algebra one, the deformation quantization one, the quan-
tum group one, and the matrix algebra/fuzzy geometry one. This volume introduces
and develops the subject by presenting in particular the ideas and methods recently
pursued by Julius Wess and his group.

These methods combine the deformation quantization approach based on the no-
tion of star product and the deformed (quantum) symmetries methods based on the
theory of quantum groups. The merging of these two techniques has proven very
fruitful in order to formulate field theories on noncommutative spaces. The aim of
the book is to give an introduction to these topics and to prepare the reader to enter
the research field himself/herself. This has developed from the constant interest of
Prof. W. Beiglboeck, editor of LNP, in this project, and from the authors experience
in conferences and schools on the subject, especially from their interaction with
students and young researchers.

In fact quite a few chapters in the book were written with a double purpose, on
the one hand as contributions for school or conference proceedings and on the other
hand as chapters for the present book. These are now harmonized and complemented
by a couple of contributions that have been written to provide a wider background,
to widen the scope, and to underline the power of our methods.

The different chapters however remain essentially self-consistent and can be read
independently. Subject to the individual interests of the reader they can be grouped
by topic: noncommutative gauge theory (Chaps. 1, 2, 4, 5), noncommutative gravity
(Chaps. 1, 3, 8), and noncommutative geometry and quantum groups (Chaps. 6, 7,
9). This very structure of the book took definite shape a little more than a year ago,
at the Alessandria conference “Noncommutative Spacetime Geometries” in March
2007, where all the authors met. At the Bayrishzell workshop “On Noncommutativ-
ity and Physics” in May 2007 the order of the chapters was then finalized.

The order of the chapters is “physics first”; the mathematics follows the physical
motivations in order to strengthen the physical intuition and investigations and to
provide a sharpening of the mathematical methods. These is turn are then used for
further physical developments. Accordingly the book is divided into a more physical
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vi Preface

first part and a more mathematical second part, although the division is not sharp,
physical applications being considered in the second part too.

The first chapter is an introduction and an overview. The reader encounters the
notion of star product and is introduced to the differential calculus on noncommu-
tative spaces and to the deformed Lie algebras (twisted Hopf algebras) of gauge
transformations and diffeomorphisms. The second chapter develops in more detail
deformed gauge theories. Pedagogic examples with matter fields are also presented.
The third chapter discusses in the same spirit the deformed algebra of differential op-
erators and hence a deformation of the theory of gravity. Changes to the original text
of Julius Wess mainly appear in the added footnotes and in the added Appendix 1.9.

The fourth chapter is a comparison between two approaches to noncommutative
gauge theory, the twisted gauge theory approach (based on deformed Lie algebras)
and the Seiberg–Witten approach.

Field theories can be studied also on more general noncommutative spaces, not
just on the Moyal–Weyl one characterized by the xμ � xν − xν � xμ = iθμν noncom-
mutative relations among coordinates (with θμν constant). Chapter 5 describes the
case of κ-deformed spacetime.

Part II of the book opens with a chapter on the basics of noncommutative mani-
folds in the C∗-algebraic approach, the guiding example being the quantum mechan-
ical phase space, i.e., the Moyal–Weyl noncommutative space. Quantum groups
(noncommutative manifolds with a group structure) are then studied in Chap. 7.
Their quantum Lie algebras are also studied, quantum Lie algebras being the under-
lying symmetries of field theories on noncommutative spaces. Chapter 8 comple-
ments Chap. 3 and studies noncommutative geometries obtained by deforming com-
mutative geometries via a twist. These geometries have twisted symmetries (twisted
quantum group symmetries). Twisted diffeomorphisms lead to a noncommutative
theory of gravity.

While twisting of spacetime symmetries leads to deformed field theories, twist-
ing of dynamical symmetries leads to new (deformed) quantum integrable systems.
The last chapter deals with this other application of twisted symmetries. In a sense
this chapter closes a circle, we deform field theories by considering noncommutative
spacetimes. These are obtained via a twist procedure. We recognize and exploit the
underlying twisted and quantum group symmetries. These structures first occurred
in 1 + 1-dimensional quantum integrable systems; the twist procedure can be also
applied in this context and leads to new physical systems.

A final chapter has later been added and describes the contributions of Julius
Wess to noncommutative geometry. As can be inferred from his joint works he was
able to enroll many students and collaborators in his research projects. This was due
to his scientific charisma, always downplayed, and to the easiness in relating with
colleagues and younger collaborators, a characteristic aspect of his personality.

Julius Wess was extremely active until his last day, his constant passion for re-
search was so strongly conveyed that concentration and energy for advancing in the
research were multiplied. In his vision the main aims and questions were always in
the foreground, progress was constant, in many little steps, like that patient walking
pace you keep when aiming at the very top. We miss his encouragement, hints, and



Preface vii

judgments and that very state of searching together that empowered our discovering
abilities. We hope the reader can experience his calm impetus along with the for-
mulae in this book, and thus be more easily brought to the research frontiers of this
field to be further developed.

Paolo Aschieri, Marija Dimitrijević, Petr Kulish and Fedele Lizzi

Alessandria, October 2008
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5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 κ-deformed space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Star product approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Gauge theory on the κ-deformed space . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Integral and the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Part II Noncommutative Geometries: Foundations and Applications

6 Noncommutative Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Fedele Lizzi
6.1 Commutative geometry (and topology) . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Topology and algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.2 Reconstructing the space from the algebra . . . . . . . . . . . . . 92
6.1.3 Geometrical structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Noncommutative spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 The GNS construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Commutative and noncommutative spaces . . . . . . . . . . . . . 99
6.2.3 Deformations of spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 The noncommutative geometry of canonical commutation relations101
6.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Quantum Groups, Quantum Lie Algebras and Twists . . . . . . . . . . . . . 111
Paolo Aschieri
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Hopf algebras from groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Quantum groups and SLq(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Universal enveloping algebras and Uq(sl(2)) . . . . . . . . . . . . . . . . . . 117



Contents xiii

7.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6 Quantum Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7 Deformation by twist and quantum Poincaré Lie algebra . . . . . . . . . 124
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Chapter 1
Differential Calculus and Gauge
Transformations on a Deformed Space

Julius Wess

Deformed gauge transformations on deformed coordinate spaces are considered for
any Lie algebra. The representation theory of this gauge group forces us to work in
a deformed Lie algebra as well. This deformation rests on a twisted Hopf algebra,
thus we can represent a twisted Hopf algebra on deformed spaces. That leads to the
construction of Lagrangian invariant under a twisted Lie algebra.

1.1 Introduction

Since Newton the concept of space and time has gone through various changes.
All stages, however, had in common the notion of a continuous linear space. Today
we formulate fundamental laws of physics, field theories, gauge field theories, and
the theory of gravity on differentiable manifolds. That a change in the concept of
space for very short distances might be necessary was already anticipated in 1854
by Riemann in his famous inaugural lecture [1]:

Now it seems that the empirical notions on which the metric determinations of Space are
based, the concept of a solid body and a light ray, lose their validity in the infinitely small;
it is therefore quite definitely conceivable that the metric relations of Space in the infinitely
small do not conform to the hypotheses of geometry; and in fact, one ought to assume this
as soon as it permits a simpler way of explaining phenomena. . .

. . . An answer to these questions can be found only by starting from that conception
of phenomena which has hitherto been approved by experience, for which Newton laid
the foundation, and gradually modifying it under the compulsion of facts which cannot be
explained by it. Investigations like the one just made, which begin from general concepts,
can serve only to ensure that this work is not hindered by too restricted concepts, and that
the progress in comprehending the connection of things is not obstructed by traditional
prejudices.

There are indications today that at very short distances we might have to go
beyond differential manifolds.

Wess, J.: Differential Calculus and Gauge Transformations on a Deformed Space. Lect. Notes Phys. 774, 3–21 (2009)
DOI 10.1007/978-3-540-89793-4 1 c© Springer-Verlag Berlin Heidelberg 2009



4 Julius Wess

In contrast to coordinate space, phase space – the space of coordinates and mo-
menta – has seen a more dramatic change. Forced by quantum mechanics we un-
derstand it as an algebraic entity based on Heisenberg’s commutation relations for
canonical variables

[xi, p j] = ih̄δ i j,

[xi,x j] = 0, [pi, p j] = 0. (1.1)

Space and momenta have become noncommutative, they form an algebra.
This algebraic setting has proved to be extremely successful. We would not un-

derstand fundamental facts of physics, the uncertainty relation, or the existence of
atoms, e.g., without it.

The uncertainty relation, however, brings us in conflict with Einstein’s law of
gravity if we assume continuity in the space variable for arbitrary small distances
[2]. From the uncertainty relation

Δxi ·Δ p j ≥ h̄
2
δ i j (1.2)

follows that we need very high energies to measure very short distances. High ener-
gies lead to the formation of black holes with a Schwarzschild radius proportional
to the energy. In turn, this does not allow the measurement of distances smaller than
the Schwarzschild radius.

This is only one of several arguments that we have to expect some changes in
physics for very small distances. Other arguments are based on the singularity prob-
lem in Quantum field theory and the fact that Einstein’s theory of gravity is non-
renormalizable when quantized [2].

Why not try an algebraic concept of spacetime that could guide us to changes
in our present formulation of laws of physics? This is different from the discov-
ery of quantum mechanics. There physics data forced us to introduce the concept
of noncommutativity. Now we take noncommutativity as a guide into an area of
physics where physical data are almost impossible to obtain. We hope that it might
solve some conceptual problems that are still left at very small distances. We also
hope that it could lead to predictions that can be tested in not too far a future by
experiment.

The idea of noncommutative coordinates is almost as old as quantum field the-
ory. Heisenberg proposed it in a letter to Peierls [3] to solve the problem of diver-
gent integrals in relativistic quantum field theory. The idea propagated via Pauli to
Oppenheimer. Finally H. S. Snyder, a student of Oppenheimer, published the first
systematic analysis of a quantum theory built on noncommutative spaces [4]. Pauli
called this work mathematically ingenious but rejected it for reasons of physics [5].

In the meantime the theory of renormalization has found a reasonable answer to
the divergency problem in quantum field theory. We should not forget, however, that
it was the renormalization problem that led to quantum gauge theories and to super-
symmetric theories. Only Einstein’s theory of gravity remained unrenormalizable
when quantized.
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From quantum spaces and quantum groups new mathematical concepts have
emerged by the pioneering work of V. G. Drinfel’d, L. Faddeev, M. Jimbo and
I. Manin [6–9]. This also revived the interest in noncommutativity in physics.

Flato and Sternheimer [10, 11] have developed the machinery of deformation
quantization. There noncommutativity appears in the form of noncommutative prod-
ucts of functions of commutative variables. These products are called star products
(�-products). They deform the commutative algebras of functions based on point-
wise multiplication to noncommutative algebras based on the star product.

Deformation theory has reached a very high and powerful level by the work of
Kontsevich and his formality theorem [12].

These developments make it worthwhile to reexamine the concept of noncom-
mutative coordinates in physics. We first show that the points of view of noncom-
mutative coordinates and of noncommutative �-products are intimately related.

1.2 The algebra

It is the algebraic structure of continuous spaces that we want to deform. To show
this structure we first consider polynomials in commutative variables x1, . . . ,xN with
complex coefficients. To define them we first define the algebra over C, freely gen-
erated by the variables x1, . . . ,xN

C[x1, . . . ,xN ]. (1.3)

This means that we take all the finite formal products of the N elements x1, . . . ,xN

as a basis for a linear space over C. A different ordering in the coordinates gives
rise to an independent element of the basis! Multiplication of the basis elements is
natural. The unit 1 in the algebra is the unique basis element of zero degree. This
then defines the freely generated algebra.1

Next we consider the relations

Rx : [xμ ,xν ] = 0. (1.4)

They generate a two-sided ideal (left and right) in C[x1, . . . ,xN ]. The quotient

Px =
C[x1, . . . ,xN ]

IR
(1.5)

is the algebra of polynomials in N commuting variables. The definition of the alge-
bra Px can be extended. First the algebra C[x1, . . . ,xN ] is extended by including a
parameter h and by considering the algebra of formal power series in h with coeffi-
cients in C[x1, . . . ,xN ]. This algebra is denoted by

1 In this book we will always consider associative algebras. Therefore, in the sequel the term
algebra will always refer to an associative algebra.
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C[x1, . . . ,xN ][[h]]. (1.6)

Then we consider the ideal in C[x1, . . . ,xN ][[h]] generated by the relations (1.4). The
quotient

Ax =
C[x1, . . . ,xN ][[h]]

IR
(1.7)

is the sought extension of Px.
Up to now we have used algebraic concepts only. No topological properties have

been mentioned. Our ambition is to go as far as possible in developing a deformed
differential calculus without invoking topological properties. This can be done by
considering formal power series in h.

A natural way is to deform the relation (1.4)2:

R̂ : [x̂μ , x̂ν ]− ihCμν(x̂) = 0, (1.8)

where Cμν(x̂) ∈ C[x̂1, . . . , x̂N ][[h]]. For h = 0 we obtain the usual algebra of com-
muting variables as introduced above.

The relations (1.8) generate a two-sided ideal IR̂ : the linear span of elements

(x̂ . . . x̂)
(
[x̂μ , x̂ν ]− ihCμν(x̂)

)
(x̂ . . . x̂), (1.9)

where (x̂ . . . x̂) stands for an arbitrary product of x̂ in the freely generated algebra
C[x̂1, . . . , x̂N ][[h]]. Multiplying an element of IR̂ by an element of C[x̂1, . . . , x̂N ][[h]]
from the right or left yields an element of IR̂ again. The quotient

ˆAx̂ =
C[x̂1, . . . , x̂N ][[h]]

IR̂
(1.10)

is an algebra in the noncommuting coordinates x̂ .
Well-known examples of such algebras are as follows:

1. The deformation with x̂-independent constant Cμν . This is the same algebra in
coordinate space as the Heisenberg algebra in phase space. We will call it the
canonical or for short θ -deformation

[x̂μ , x̂ν ] = ihθμν , (1.11)

where Cμν(x̂) = θμν = −θνμ ∈ R.
2. The Lie algebra type of deformation. In this case Cμν(x̂) is linear in the

x̂-variables,
[x̂μ , x̂ν ] = ih f μνρ x̂ρ . (1.12)

2 In order to stress that these resulting variables are no longer commutative, we denote them with
a hat.
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The Lie algebra structure constants are h f μνρ and (as always in this book) sum
over repeated indices is understood. The algebra ˆAx̂ that we are constructing is
the universal enveloping algebra of the Lie algebra (1.12).
A particularly interesting example of the Lie algebra type is

[x̂μ , x̂ν ] = i(aμ x̂ν −aν x̂μ), (1.13)

with real parameters aμ . In a basis where ai = 0 for i �= N and aN = 1/κ we can
identify this algebra with the algebra of the κ-deformations [13, 14] (historically
for these deformations the parameter κ rather than h is used).

The “size” of the algebra ˆAx̂ will depend on the ideal IR̂ . It can range from C

to the freely generated algebra itself.3 We certainly would like an infinite algebra, if
possible of the “size” of the algebra Ax of commuting variables. To be more precise,
the vector space of the algebra Ax can be decomposed into subspaces Vr spanned by
monomials of a given degree r. These vector spaces are finite dimensional. A basis
of Vr is given by the monomials xi1 xi2 . . .xir with i1 ≤ i2 ≤ . . . ir. Consider the vector
space Fr =

⊕r
s=0 Vs spanned by all monomials up to degree r. Then we require the

vector space F̂r in ˆAx̂ of all polynomials up to degree r in the noncommutative
variables to have the same dimension as Fr. We also require the ordered monomials
up to degree r

x̂i1 x̂i2 . . . x̂is , i1 ≤ i2 ≤ . . . is , 0 ≤ s ≤ r (1.14)

to be a basis of F̂r. We could also consider a different ordering. More in general we
require monomials up to degree r, and ordered with respect to any given ordering,
to form a basis of F̂r. Thus any monomial of degree r can be rewritten as an ordered
polynomial of degree up to r.

When an algebra ˆAx̂ satisfies these conditions we say that it has the Poincaré–
Birkhoff–Witt (PBW) property. The θ -deformation and the enveloping Lie algebras
have this property (this is the PBW theorem).

The art of the game now is to find relations (1.8) that imply the PBW property.
This restricts the x̂ dependence of Cμν(x̂). It is natural to consider Cμν(x̂) at most
quadratic in x̂ and antisymmetric in μ and ν (otherwise we introduce the relations
Ci j(x̂)+Cji(x̂) = 0 in C[x̂1, . . . , x̂N ][[h]], these may lead to dimF̂2 < dimF2).

To be consistent with the reality property (xμ)∗ = xμ we demand a conjugation
for x̂ as well

(x̂μ)∗ = x̂μ , (x̂μ x̂ν)∗ = (x̂ν)∗(x̂μ)∗, (i)∗ = −i. (1.15)

This implies
(Cμν)∗ = −Cνμ = Cμν . (1.16)

3 In the remaining part of this page and in the following one we omit the formal parameter h. To
reinsert it just consider ˆAx̂ as algebra over C[[h]], formal power series in h with coefficients in C

(see also end of Appendix 1.9).



8 Julius Wess

1.3 The star product

In an algebra ˆAx̂ with the PBW property, the set of all monomials ordered with
respect to a given fixed ordering forms a basis. The symmetric ordering gives fully
symmetrized monomials, it is a natural choice but not the only one. The linear span
of the basis elements of degree r defines the vector space V̂r. By construction this
space has the same dimension as the vector space Vr of polynomials of degree r in
N commuting variables.

In this section we extend the vector space isomorphism

V̂r ∼Vr (1.17)

to an algebra isomorphism
ˆAx̂ ∼ A �

x , (1.18)

as vector spaces Ax and A �
x coincide. The �-product (or Moyal product) in A �

x
is defined so that the algebras ˆAx̂ and A �

x are isomorphic. By the vector space
isomorphism we map polynomials

p(x) ←→ p̂(x̂), (1.19)

by a map of the basis. Two polynomials p̂1(x̂) and p̂2(x̂) can be multiplied

p̂1(x̂) · p̂2(x̂) = p̂1 p2(x̂). (1.20)

By the isomorphism of (1.19) we map this polynomial back to a polynomial in Ax

p̂1 p2(x̂) 
→ p1(x)� p2(x). (1.21)

This defines the star product of two polynomial functions. It is bilinear and associa-
tive but noncommutative.

For the θ -deformation in the symmetric basis we obtain [16, 17], see Appendix
1.9 for details,

p1(x)� p2(x) = μ
(

e
i
2 hθρσ ∂ρ⊗∂σ p1(x)⊗ p2(x)

)
, (1.22)

where μ is the multiplication map

μ ( f (x)⊗g(x)) = f (x) ·g(x). (1.23)

This �-product is the well-known Moyal product. It can be extended to C∞ func-
tions, remaining bilinear and associative. The power series in h will not converge
for arbitrary C∞ functions, we in general consider it as a formal power series.

When we expand in h we obtain

f (x)�g(x) = f (x)g(x)+O(h)
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and

f (x)�g(x) − g(x)� f (x) (1.24)

=
ih
2
θρσ
(
(∂ρ f (x))(∂σg(x))− (∂ρg(x))(∂σ f (x))

)
+O(h2).

Equation (1.24) defines the Poisson structure

{ f ,g} =
i
2
θρσ
(
(∂ρ f )(∂σg)− (∂ρg)(∂σ f )

)
. (1.25)

Kontsevich has shown that for any Poisson structure on a differentiable manifold
M there exists a �-product deformation4 of the algebra C∞(M)[[h]] of formal power
series in h of smooth functions C∞(M) from M to C. The Poisson structure is defined
as in (1.24) and (1.25).

Knowing this, it seems natural to investigate noncommutative spaces in the
�-product framework.

Our aim now is to formulate laws of physics on an algebra of functions whose
product is not the pointwise product but a noncommutative star product. We call this
algebra A �

x .
One important step in this direction is the development of a differential calculus

on this deformed algebra of functions A �
x . This we will do next. But let me for

the convenience of the reader summarize the notation first. This notation will be
systematically used in the first part of the book.

Notation

• μ( f ⊗g) = f ·g – pointwise multiplication.
• μ�( f ⊗g) = f �g – star multiplication. In the canonical (θ -deformed) case

μ�( f ⊗g) = f �g = μ
(

e
i
2 hθρσ ∂ρ⊗∂σ f ⊗g

)

=
∞

∑
n=0

( ih
2

)n 1
n!
θρ1σ1 . . .θρnσn

(
∂ρ1 . . .∂ρn f

)(
∂σ1 . . .∂σng

)
.

• Px – algebra of polynomials in N commuting variables x1, . . . ,xN .
• P̂x̂ – algebra of polynomials in N noncommuting variables x̂1, . . . , x̂N .
• Ax – algebra of formal power series in h of polynomials in N commuting vari-

ables x1, . . . ,xN . Depending from the context, also a completion of it, like for
example the algebra of formal power series in h of smooth functions from R

N to
C.

4 A �-product � : C∞(M)[[h]]×C∞(M)[[h]]→C∞(M)[[h]] is a bidifferential operator (a differential
operator on both of its arguments) that is associative, that satisfies f �1 = 1� f = f for any f , and
that at zeroth order in h reduces to the usual commutative product of functions.

In order to stress that higher derivatives may appear in a differential operator (and do appear in
�-products) we frequently refer to differential operators as higher order differential operators.
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• ˆAx̂ – algebra of formal power series in h of polynomials in N noncommuting
variables x̂1, . . . , x̂N or, depending on the context, a completion of it.

• A �
x – algebra of formal power series in h of polynomials in N commuting vari-

ables x1, . . . ,xN with �-product multiplication. Depending from the context, also
a completion of it.

• Vr – linear subspace of Ax spanned by monomials in x1, . . . ,xN of degree r.
• V̂r – linear subspace of ˆAx̂ spanned by monomials in x̂1, . . . , x̂N of degree r.
• Fx – linear space of functions in N commuting variables x1, . . . ,xN .
• D{d} – higher order differential operator acting on Ax.
• D�

{d} – higher order differential operator acting on A �
x .

• A D{d} – algebra of higher order differential operators D{d}.
• A �D�

{d} – algebra of higher order differential operators D�
{d}.

1.4 A deformed differential calculus

Let us first define a derivative as a map of C∞ functions to C∞ functions

∂μ : Ax → Ax

f (x) 
→ (∂μ f (x)), (1.26)

where ∂μ = ∂/∂xμ . For polynomials this map can be defined purely algebraically
by stating the rule

∂μ : xρ 
→ δρμ (1.27)

and using linearity and the Leibniz rule

(∂μ(p1 · p2)) = (∂μ p1) · p2 + p1 · (∂μ p2). (1.28)

We know that this defines the derivative of polynomials. This can be easily extended
to formal power series. We use it to define the derivative on A �

x by first mapping an
element of A �

x to Ax, differentiate this element in Ax and map it back to A �
x . Thus,

we define

∂ �
μ : A �

x → A �
x (1.29)

f (x) ∈ A �
x 
→ f (x) ∈ Ax 
→ (∂μ f (x)) ∈ Ax 
→ (∂ �

μ f (x)) ∈ A �
x .

Since the vector space structure of Ax and A �
x is the same (we denoted it by Fx)

the partial derivative ∂ �
μ defined in (1.29) coincides with ∂μ . We could simply (as

we frequently do) omit the � in ∂ �
μ . The notation ∂ �

μ is to emphasize that the partial
derivative acts on the deformed algebra of functions A �

x . Indeed the Leibniz rule
with respect to the �-product changes. In general we have

∂ �
μ( f �g) = (∂ �

μ f )�g+ f � (∂ �
μg)+ f (∂ �

μ�)g. (1.30)
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We have obtained a differential calculus on the deformed algebra of functions
A �

x .
In the case of θ -deformation the �-operation is x-independent and we obtain the

usual Leibniz rule:
∂ �
μ( f �g) = (∂ �

μ f )�g+ f � (∂ �
μg). (1.31)

For x-dependent �-products, e.g., the κ-deformation, this will change. In the remain-
ing sections we consider the x-independent �-product of the θ -deformation.

1.5 A deformed algebra of differential operators

The differential calculus can be extended to the algebra of higher order differential
operators. This algebra includes also functions.

On the commutative algebra Ax a higher order differential operator is defined as
follows

D{d} = ∑
r≥0

dρ1...ρr
r (x)

∂
∂xρ1

. . .
∂
∂xρr

. (1.32)

These operators form an algebra A D{d} because we know how to multiply them.
This algebra is noncommutative, the commutation relations between coordinates
and partial derivatives are ∂μxν − xν∂μ = δνμ ; the commutation relations between
functions and partial derivatives are

∂μ f = (∂μ f )+ f∂μ , f ∈ Ax. (1.33)

We can also write ∂ �
μxν − xν∂ �

μ = δνμ and

∂ �
μ f = (∂ �

μ f )+ f∂ �
μ , f ∈ A �

x . (1.34)

For the deformed space of functions we denote the differential operators as

D�
{d} = ∑

r≥0
dρ1...ρr

r (x)∂ �
ρ1

. . .∂ �
ρr

. (1.35)

They act on a function as (D�
{d} � f ) = ∑r≥0 dρ1...ρr

r (x) �
(
∂ �
ρ1

. . .∂ �
ρr

f
)
. From the

Leibniz rule (1.34) and the definition of the �-product for functions we learn how
to multiply these deformed operators and in this way obtain the deformed algebra
of differential operators A �D�

{d} acting on elements of the deformed algebra of

functions.5

5 The multiplication of the operators D� and D ′� is their composition, we denote it by D� �D ′�,(
(D� � D ′�) � f

)
:= (D� � (D ′� � f )). For example, the product of the zeroth-order differential

operators D� = d and D ′� = d′ is the zeroth-order differential operator D� �D ′� = d � d′, indeed
(d � d′) � f = d � d′ � f = (D � (D ′ � f )). We see that in this case the composition of operators
corresponds to the �-product of functions. For first-order differential operators D� = dρ∂ �

ρ and
D ′� = d′σ∂ �

σ we have D� �D ′� = dρ � (∂ρd′σ )∂ �
σ + (dρ �d′σ )∂ �

ρ ∂ �
σ .
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There is a formal isomorphism between the algebras A D{d} and A �D�
{d}. We

are going to show this for special subalgebras.
There exists a higher order differential operator X�

f ∈ A �D�
{d} such that6

X�
f �g = f ·g (1.36)

where f is an element of Ax (a zeroth-order differential operator) and on the right-
hand side we have its undeformed action on the function g. To find X�

f we proceed
as follows

f ·g = μ
(

e
ih
2 θ

αβ ∂α⊗∂β e−
ih
2 θ

ρσ ∂ρ⊗∂σ f ⊗g
)

= μ
(

e
ih
2 θ

αβ ∂α⊗∂β
∞

∑
r=0

(
− ih

2

)r 1
r!
θρ1σ1 . . .θρrσr

(
∂ρ1 . . .∂ρr f

)
⊗
(
∂σ1 . . .∂σr g

))

=
∞

∑
r=0

(
− ih

2

)r 1
r!
θρ1σ1 . . .θρrσr

(
∂ρ1 . . .∂ρr f

)
�
(
∂σ1 . . .∂σr g

)
. (1.37)

The operator we are looking for is

X�
f =

∞

∑
r=0

(
− ih

2

)r 1
r!
θρ1σ1 . . .θρrσr

(
∂ρ1 . . .∂ρr f

)
∂ �
σ1

. . .∂ �
σr

. (1.38)

It is a higher order differential operator acting on Fx.
Because f ·g is again an element of Fx we can act with X�

h on it

h · f ·g = (h · f ) ·g = X�
(h f ) �g = h · ( f ·g) = h(X�

f �g) = X�
h � (X�

f �g). (1.39)

It follows that X�
f represents the algebra Ax

X�
g �X�

f = X�
g f . (1.40)

Let us consider vector fields

ξ = ξ μ(x)∂μ . (1.41)

Their product is again in A D{d}

ξη = ξ μ(x)
(
∂μηρ(x)

)
∂ρ +ξ μ(x)ηρ(x)∂μ∂ρ . (1.42)

Through the Lie bracket the vector fields form an algebra

[ξ ,η ] =
(
ξ μ(∂μηρ)−ημ(∂μξρ)

)
∂ρ

= (ξ ×η)ρ∂ρ = ξ ×η . (1.43)

6 We should write (X�
f �g) = f ·g in order to stress that X�

f acts on the function g. Since we never
consider the product of the differential operators X�

f and g, for ease of notation from now on we
drop the parenthesis.
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The vector field ξ can be mapped to A �D�
x ,

ξ 
→ X�
ξ = X�

ξρ ∂
�
ρ

X�
ξ � f = (X�

ξρ ∂
�
ρ )� f = X�

ξρ �∂ρ f = ξ · f .

From the associativity in the algebra it follows

(X�
η �X�

ξ )� f = X�
η � (X�

ξ � f ) = X�
η � (ξ f ) = ηξ f , (1.44)

and therefore
X�
η �X�

ξ −X�
ξ �X�

η = X�
η×ξ . (1.45)

The deformed vector fields under the deformed Lie bracket form the same algebra
as the vector fields under the ordinary Lie bracket.

1.6 Gauge transformations

Ordinary infinitesimal gauge transformations7 are Lie algebra valued

α(x) = αa(x)T a,

[T a,T b] = i f abcT c. (1.46)

The action on a field is
δαψ = iαψ = iαa(x)T aψ. (1.47)

This can be reproduced by a star action on the field (cf. (1.36) and (1.38)):

δ �
αψ = iX�

αa(x) �T aψ = iα ·ψ, (1.48)

and represents the algebra via the commutator:

[δ �
α ,δ �

β ] = δ �
αδ �

β −δ �
β δ

�
α = −iδ �

[α,β ]. (1.49)

Gauge transformations of this kind have been introduced in [18–20]. Interesting is
the transformation law of products of fields.

In the undeformed case we start from the transformation properties of the indi-
vidual fields and transform the product as follows:

δα(ψχ) = (δαψ)χ+ψ(δαχ)

= iαa
(
(T aψ)χ+ψ(T aχ)

)
. (1.50)

7 In this book ordinary, usual, or undeformed gauge transformations (gauge theory) refer to gauge
transformations (gauge theory) on commutative spacetime.
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In accordance with (1.48) we translate this to a star action

δ �
α(ψ �χ) = iX�

αa �{(T aψ)�χ+ψ � (T aχ)} . (1.51)

The transformation law (1.51) is compatible with the algebra (1.49).
We now derive the deformed Leibniz rule obeyed by δ �

α . We rewrite (1.51) as

δ �
α(ψ �χ) = iαa · {(T aψ)�χ+ψ � (T aχ)} . (1.52)

Expanding the right-hand side of (1.52) to first order in θ we obtain

δ �
α(ψ �χ) = iαa

{
T aψ ·χ+ψ ·T aχ (1.53)

+
ih
2
θρσ (T a(∂ρψ) · (∂σ χ)+(∂ρψ) ·T a(∂σ χ))+O(θ 2)

}
.

To compare this with the undeformed Leibniz rule (δ �
αψ)�χ+ψ �(δ �

αχ) we rewrite
(1.53) by introducing the star product again and separating the terms that are of the
form δ �

αψ = iαψ and δ �
αχ = iαχ ,

δ �
α(ψ �χ) = (iαψ)�χ+ψ � (iαχ) (1.54)

− ih
2
θρσ ((i∂ραa)T aψ(∂σ χ)+(∂ρψ)(i∂σαa)T aχ)+O(θ 2).

This expression can be extended to all orders in θ by induction.8 The result is

8 Let us redo the previous calculation in the second order of the deformation parameter. The proof
by induction can then easily be derived by the same method.

First we expand the �-product on the right-hand side of (1.52) to second order in the deforma-
tion parameter θρσ

δ �
α (ψ �χ) = iαa

{
T aψ ·χ+ψ ·T aχ

+
ih
2
θρσ
(
T a(∂ρψ) · (∂σ χ)+(∂ρψ) ·T a(∂σ χ)

)
(1.55)

− h2

8
θρ1σ1θρ2σ2

(
T a(∂ρ1∂ρ2ψ) · (∂σ1∂σ2χ)+(∂ρ1∂ρ2ψ) ·T a(∂σ1∂σ2χ)

)
+O(θ 3)

}
.

In the next step the terms of the form δ �
αψ , δ �

αχ , and similar are collected and the �-product is
reintroduced:

δ �
α (ψ �χ) = i(αaT aψ)�χ+ iψ � (αaT aχ)

+i

(
− ih

2
θρσ
)(

[(∂ραa)T aψ]� (∂σ χ)+(∂ρψ)� [(∂σαa)T aχ]
)

+i
1
2!

(
− ih

2

)2
θρ1σ1θρ2σ2

(
[(∂ρ1∂ρ2α

a)T aψ]� (∂σ1∂σ2χ)

+(∂ρ1∂ρ2ψ)� [(∂σ1∂σ2α
a)T aχ]

)
+O(θ 3). (1.56)
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δ �
α(ψ �χ) = i(αaT aψ)�χ+ iψ � (αaT aχ)

+i
∞

∑
n=1

1
n!

(
− ih

2

)n

θρ1σ1 . . .θρnσn{(∂ρ1 . . .∂ρnα)ψ � (∂σ1 . . .∂σnχ)

+(∂ρ1 . . .∂ρnψ)� (∂σ1 . . .∂σnα)χ}. (1.57)

The transformation law of the product of fields follows from the transformation
law of the tensor product of fields. This is nicely expressed using the notion of
coproduct, a main ingredient in the definition of a Hopf algebra [15]. Hopf algebras
will be introduced and discussed in more detail in Chaps. 7 and 8. For undeformed
gauge transformations we can write (1.50) in the Hopf algebra language

δα(ψ⊗χ) = iΔ(α)ψ⊗χ. (1.58)

The coproduct Δ(α) represents the Lie algebra in the tensor product representation

Δ(α) = α⊗1+1⊗α, (1.59)

[Δ(α),Δ(β )] = Δ([α,β ]). (1.60)

The transformation law of the pointwise product can be defined with the multi-
plication μ :

δα(ψχ) = μ{Δ(α)ψ⊗χ}. (1.61)

The transformation law of the �-product can be defined with the �-multiplication μ�

and the twisted coproduct. We define the twisted coproduct9

ΔF (α) = F (α⊗1+1⊗α)F−1 (1.62)

with
F = e−

ih
2 θ

ρσ ∂ρ⊗∂σ . (1.63)

This twist F has all the properties that are required to define a Hopf algebra struc-
ture [21, 22]. We can show that

δ �
α(ψ �χ) = μ�{ΔF (α)ψ⊗χ} (1.64)

by a direct calculation performed expanding order by order in θ .10

Note that the term i(∂ραa)T aψ can be interpreted as the transformation law of the field ψ with
the gauge parameter ∂ρα that is δ �

∂ραψ . Equation (1.56) gives the deformed Leibniz rule to second

order in the deformation parameter θρσ . Repeating this calculation for higher orders leads to the
deformed Leibniz rule (1.57).
9 The term twisted coproduct emphasizes that ΔF is a deformation of the undeformed coproduct
(1.60). ΔF has all the properties of a Hopf algebra coproduct. Similarly in this book by twisted
Hopf algebra we mean a Hopf algebra that is obtained deforming (via a twist F ) another Hopf
algebra, typically the Hopf algebra associated with a Lie algebra.
10 For example, at first order in θ we have

ΔF (α) = F (α⊗1+1⊗α)F−1 = α⊗1+1⊗α− ih
2
θρσ [∂ρ ⊗∂σ ,α⊗1+1⊗α]+O(θ 2)



16 Julius Wess

1.7 Diffeomorphism

Infinitesimal diffeomorphisms are vector fields. They are elements of A Dx

ξ = ξ μ(x)∂μ . (1.65)

Their product in A Dx is

ξη = ξ μ(x)
(
∂μηρ(x)

)
∂ρ +ξ μ(x)ηρ(x)∂μ∂ρ . (1.66)

Through the Lie bracket we obtain the Lie algebra of diffeomorphism

[ξ ,η ] =
(
ξ μ(∂μηρ)−ημ(∂μξρ)

)
∂ρ

= (ξ ×η)ρ∂ρ = ξ ×η . (1.67)

The vector field ξ , an element of A Dx, can be mapped to A �D�
x

A Dx → A �D�
x

ξ 
→ X�
ξ = X�

ξρ ∂
�
ρ . (1.68)

When it �-acts on a function f ∈ Ax we obtain

X�
ξ � f = (X�

ξρ ∂
�
ρ )� f = X�

ξρ �∂ρ f = ξ · f . (1.69)

This is analogous to (1.38) and we can proceed as there. From associativity in A Dx

and A �D�
x follows

(X�
η �X�

ξ )� f = X�
η � (X�

ξ � f ) = X�
η � (ξ f ) = ηξ f , (1.70)

and therefore
X�
η �X�

ξ −X�
ξ �X�

η = X�
η×ξ . (1.71)

The deformed vector fields under the Lie bracket [X�
η

�, X�
χ ] = X�

η �X�
ξ −X�

ξ �X�
η close

the same algebra as the vector fields under the ordinary Lie bracket. They represent
the deformed algebra11 of diffeomorphisms.

Based on this deformed algebra of diffeomorphisms the Einstein theory of grav-
ity on noncommutative (deformed) space has been constructed in [21, 22]. The
coproduct of the diffeomorphisms algebra has to be modified as before for gauge
theories. It is the first theory of gravity defined on a deformed space and is under
investigation now.

and recalling (1.33) we obtain ΔF (α) = α⊗1+1⊗α− ih
2 θ

ρσ ((∂ρα)⊗∂σ +∂ρ ⊗ (∂σα)). This
agrees with (1.54).
11 Deformed or noncommutative algebra of diffeomorphisms refers to the algebra of diffeomor-
phisms on the noncommutative space.
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1.8 Conclusion

The formalism developed here opens a way to construct a deformation of differential
geometry and therefore deformed gauge theories and gravity theories. Mathemati-
cally it is certainly an interesting possibility. If physics knows anything about it is
hard to say. Future investigation might shed some light on this question. I am left to
quote Riemann and express my hope that

...this work is not hindered by too restricted concepts and that the progress in comprehend-
ing the connection of things is not obstructed by traditional prejudices.

1.9 Appendix

In this appendix12 we discuss in more detail the application of the Poincaré–
Birkhoff–Witt property and derive explicitly the Moyal product (1.22).

Consider the algebra Px of polynomial functions in N commuting coordinates
x1, . . . ,xN . Any function can be expanded in the monomial basis

f (x) =∑
j

Cμ1...μ j x
μ1 . . .xμ j

= C +Cμxμ +Cμνxμxν + · · · (1.72)

and is uniquely determined by the coefficients Cμ1...μ j that are completely symmetric
in their indices.

Consider an algebra P̂x̂ of polynomial functions in N noncommuting coordinates
x̂1, . . . , x̂N and with the PBW property. The PBW property enables the introduction
of a basis of ordered monomials. There are many possible orderings. The most often
used ones are the symmetric and the normal ordering. If we chose the symmetric
ordering (we denote the ordering by : :), the basis in the algebra is given by

: 1 : = 1,

: x̂μ : = x̂μ ,

: x̂μ x̂ν : =
1
2
(x̂μ x̂ν + x̂ν x̂μ),

. . . . (1.73)

An arbitrary element of P̂x̂ is then written as an expansion in the basis (1.73)

f̂ (x̂) =∑
j

Cμ1...μ j : x̂μ1 . . . x̂μ j :

= C +Cμ : x̂μ : +Cμν : x̂μ x̂ν : + · · · , (1.74)

12 This appendix, the footnotes in Chaps. 1–3, and the note at the end of Sect. 3.3 have been added
by Paolo Aschieri and Marija Dimitrijević.
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and it is fully characterized by the completely symmetric coefficients Cμ1...μ j .

We call W 13 the isomorphism between the vector spaces Px and P̂x̂ obtained
by mapping the basis of Px into the basis of P̂x̂ selected by the chosen ordering
prescription. Explicitly,

W

f (x) = C +Cμxμ + Cμν xμxν + · · ·

f̂ (x̂) = C +Cμ : x̂μ : +Cμν : x̂μ x̂ν : + · · · .

�

��
� �
� �
� �
�

(1.75)

In the case of symmetric ordering, an equivalent expression (see also Sect. 6.3) is
given by

f̂ (x̂) = W ( f ) =
1

(2π)N/2

∫
dNk f̃ (k)eikρ x̂ρ , (1.76)

where f̃ (k) is the usual Fourier transform of f (x)

f̃ (k) =
1

(2π)N/2

∫
dNx f (x)e−ikρ xρ . (1.77)

Indeed f̂ (x̂) is a sum of fully symmetrized monomials because for any value of kρ
and any power n, the expression (kρ x̂ρ)n is fully symmetrized.

For an arbitrary monomial we have

W (xμ1 . . .xμ j) = (i) j
∫

dNk
(
∂kμ1

. . .∂kμ j
δ (N)(k)

)
eikρ x̂ρ

= (i) j(−1) j
∫

dNk δ (N)(k)
(
∂kμ1

. . .∂kμ j
eikρ x̂ρ

)

= (i)2 j(−1) j 1
j! ∑σ∈S j

(x̂σ(μ1) . . . x̂σ(μ j))

= : x̂μ1 . . . x̂μ j : . (1.78)

The �-product is defined by

W ( f �g) = W ( f ) ·W (g) = f̂ (x̂) · ĝ(x̂). (1.79)

Let us derive this �-product in the case of θ -deformed space, defined by relations
(1.11). We start from

W ( f ) ·W (g) =
1

(2π)N/2

∫
dNk f̃ (k)eikρ x̂ρ · 1

(2π)N/2

∫
dN p g̃(p)eipρ x̂ρ

13 The symbol W refers to Weyl since he was the first one to introduce this procedure in quantum
mechanics [16, 17].
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=
1

(2π)N

∫
dNk

∫
dN p f̃ (k)g̃(p)eikρ x̂ρ eipσ x̂σ .

Since the exponents do not commute (coordinates x̂μ do not commute) one has to
use the Campbell–Baker–Hausdorff (CBH) formula

eAeB = eA+B+ 1
2 [A,B]+ 1

12 ([A, [A,B]]+[B, [B,A]])+···, (1.80)

where A and B are two noncommuting operators. In the case of θ -deformed space
the CBH formula terminates, terms with more than one commutator vanish, and we
obtain

W ( f ) ·W (g) =
1

(2π)N

∫
dNk

∫
dN p f̃ (k)g̃(p)ei(k+p)ρ x̂ρ− i

2 θ
ρσ kρ pσ (1.81)

=
1

(2π)N

∫
dNk

∫
dNq f̃ (k)g̃(q− k)eiqρ x̂ρ− i

2 θ
ρσ kρ (q−k)σ .

In the last line a change of variables (k + p)ρ = qρ is performed. Comparing this
expression with

W ( f �g) =
1

(2π)N/2

∫
dNq f̃ �g(q)eiqρ x̂ρ , (1.82)

we conclude

f̃ �g(q) =
1

(2π)N/2

∫
dNk f̃ (k)g̃(q− k)e−

i
2 θ

ρσ kρ (q−k)σ . (1.83)

The last step is the inverse Fourier transform

f �g(x) =
1

(2π)N/2

∫
dNq

( 1

(2π)N/2

∫
dNk f̃ (k)g̃(q− k)e−

i
2 θ

ρσ kρ (q−k)σ
)

e−iqσ xσ

=
1

(2π)N

∫
dN p

∫
dNk f̃ (k)e−ikσ xσ e−

i
2 kρθρσ pσ g̃(p)e−ipσ xσ .

In the last line the change of variables (q− k)μ = pμ is performed. In order to eval-
uate this integral we expand in powers of the deformation parameter θρσ , calculate
term by term, and then sum up all the terms again

f �g(x) =
1

(2π)N

∫
dNq

∫
dNk f̃ (k)e−ikσ xσ

(
1− i

2
kρθρσ pσ

+
1
2!

(
− i

2

)2

kρ1 kρ2θ
ρ1σ1θρ2σ2 pσ1 pσ2 + · · ·

)
g̃(p)e−ipσ xσ

= f g+
i
2
θρσ (∂ρ f )(∂σg)− 1

8
θρ1σ1θρ2σ2(∂ρ1∂ρ2 f )(∂σ1∂σ2 g)+ · · ·

= μ{e
i
2 hθρσ ∂ρ⊗∂σ f ⊗g}. (1.84)

The pointwise multiplication was defined in (1.23).
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For polynomial functions expression (1.84) is a finite sum and therefore we have
a well-defined �-product. On the other hand, in general for f and g smooth functions
we have an infinite sum that not always converges. One route is to consider different
expressions for the �-product that however reduce to the above one for polynomial
functions. These expressions are typically via an integral kernel and therefore are
nonlocal, an example is

f �g(x) = (2π)−2N
∫ ∫

f

(
x+

1
2
θu

)
g(x+ s)eiusdNudNs .

This product is well defined on the space of smooth rapidly decreasing functions.
A different route is to continue to work with a �-product that is a differential

operator in both its arguments (i.e., a bidifferential operator). This is achieved by
introducing the formal parameter h and by considering the algebra Ax of formal
power series in h of smooth functions. The �-product (1.84) is well defined on Ax

and we obtain the deformed algebra A �
x .
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21. P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp and J. Wess, A gravity theory on

noncommutative spaces, Class. Quant. Grav. 22, 3511–3522 (2005), [hep-th/0504183]. 15, 16
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Chapter 2
Deformed Gauge Theories

Julius Wess

Gauge theories are studied on a space of functions with the Moyal product. The
development of these ideas follows the differential geometry of the usual gauge the-
ories, but several changes are forced upon us. The Leibniz rule has to be changed
such that the theory is now based on a twisted Hopf algebra. Nevertheless, this
twisted symmetry structure leads to conservation laws. The symmetry has to be
extended from Lie algebra valued to enveloping algebra valued and new vector po-
tentials have to be introduced. As usual, field equations are subjected to consistency
conditions that restrict the possible models. Some examples are studied.

2.1 Introduction

Gauge theories have been formulated and developed on the algebra of functions
with a pointwise product:

μ{ f ⊗g} = f ·g. (2.1)

This product is associative and commutative.
Recently, algebras of functions with a deformed product have been studied in-

tensively [1–5]. These deformed (star) products remain associative but not commu-
tative.

The simplest example is the Moyal product,1 see Chap. 1 for details

μ�{ f ⊗g} = μ{e
i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g}. (2.2)

It had its first appearance in quantum mechanics [6, 7].
The star product can be seen as a higher order f -dependent differential operator

acting on the function g. For the example of the Moyal product this is

1 Note that in this and in the following chapters in the first part of the book the deformation
parameter h is absorbed in θρσ . Therefore, from now on we refer to θρσ as the deformation
parameter.

Wess, J.: Deformed Gauge Theories. Lect. Notes Phys. 774, 23–37 (2009)
DOI 10.1007/978-3-540-89793-4 2 c© Springer-Verlag Berlin Heidelberg 2009
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f �g =
∞

∑
n=0

1
n!

(
i
2

)n

θρ1σ1 . . .θρnσn
(
∂ρ1 . . .∂ρn f

)
(∂σ1 . . .∂σn g) . (2.3)

The differential operator maps the function g to the function f �g.
The inverse map also exists [8, 9]. It �-maps the function g to the function ob-

tained by pointwise multiplying it with f

X�
f �g = f ·g (2.4)

For the Moyal product we obtain

X�
f =

∞

∑
n=0

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn
(
∂ρ1 . . .∂ρn f

)
�∂ �

σ1
. . .∂ �

σn
. (2.5)

The star-acting derivatives we denote by ∂ �
ρ . For the Moyal product the

�-derivatives and the usual derivatives are the same. Star differentiation and star
differential operators have been thoroughly discussed in Chap. 1 and in [9, 10].

In this chapter we are going to study gauge transformations on Moyal or
θ -deformed spaces.2

2.2 Gauge transformations

Undeformed infinitesimal gauge transformations are Lie algebra valued:

δαφ(x) = iα(x)φ(x),
α(x) =∑

a
αa(x)T a, (2.6)

[T a,T b] = i f abcT c,

[δα ,δβ ]φ = [α,β ]φ = −iδ[α,β ]φ ,

where φ(x) is a matter field which belongs to an irreducible representation of the
gauge group.

In the previous chapter deformed gauge transformations were introduced. Here
we analyze them in more detail. They are defined as follows [11, 12]:

δ �
αφ = iX�

α �φ = iX�
αa T a �φ = iα ·φ . (2.7)

From the fact that X�
f �X�

g = X�
f ·g, we conclude

[X�
α

�, X�
β ] = X�

−i[α,β ],

[δ �
α ,δ �

β ]φ = −iδ �
[α,β ]φ . (2.8)

2 A comparison between the present approach to noncommutative gauge theories and an earlier
one, so-called Seiberg–Witten map approach, is in Chap. 5.
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The �-transformations δ �
α represent the algebra via the usual3 commutator. How-

ever, written in terms of the operators X�
α the same algebra is represented via the

�-commutator.

Before we construct gauge theories we have to learn how products of fields trans-
form.

In the undeformed situation we use, without even thinking, the Leibniz rule:

δα(φ ·ψ) = (δαφ) ·ψ+φ · (δαψ), (2.9)

and we can easily verify that this Leibniz rule is consistent with the Lie algebra:

[δα ,δβ ](φ ·ψ) = −iδ[α,β ](φ ·ψ). (2.10)

For the deformed transformation law of a �-product of fields we demand a trans-
formation law that is in the class of transformations defined in (2.7) [8, 9, 11, 13, 14].
This amounts to first decomposing the representation φ �ψ for x-independent pa-
rameters into its irreducible parts and then follow (2.7) for gauging

δ �
α(φ �ψ) = iX�

αa �{T aφ �ψ+φ �T aψ}. (2.11)

Certainly it is consistent with the Lie algebra:

[δ �
α ,δ �

β ](φ �ψ) = −iδ �
[α,β ](φ �ψ). (2.12)

Because φ �ψ is a function we can use the definition of X�
f given in (2.4) and

simplify (2.11)
δ �
α(φ �ψ) = iαa · {T aφ �ψ+φ �T aψ}. (2.13)

As αa does not commute with the �-operation this is different from (2.9). To see
this difference more clearly we expand (2.13) in θ

δ �
α(φ �ψ) = iαa

{
T aφ ·ψ+φ ·T aψ

+
i
2
θρσ

(
T a∂ρφ ·∂σψ+∂ρφ ·T a∂σψ

)
+O(θ 2)

}
. (2.14)

The final version of the Leibniz rule for the �-product should be entirely ex-
pressed with �-operations. Thus we express (2.14) with �-products. A short calcu-
lation (see Chap. 1, Sect. 1.6 for details) shows

δ �
α(φ �ψ) = i(αφ)�ψ+ iφ � (αψ) (2.15)

− i
2
θρσ

(
i
(
(∂ρα)φ

)
� (∂σψ)+(∂ρφ)� i((∂σα)ψ)

)
+O(θ 2).

3 Here the usual commutator [A, B] = AB−BA stands in contrast to the �-commutator which is
defined in the following way [A �, B] = A�B−B�A.
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With more work we can prove by induction to all orders in θ the following equation:

δ �
α(φ �ψ) = i(αφ)�ψ+ iφ � (αψ)

+i
∞

∑
n=1

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn{(∂ρ1 . . .∂ρnα)φ � (∂σ1 . . .∂σnψ)

+(∂ρ1 . . .∂ρnφ)� (∂σ1 . . .∂σnα)ψ}. (2.16)

This is different from what we obtain by putting just stars in the Leibniz rule (2.9).
But this difference has a well-defined meaning if we use the Hopf algebra language
to derive the Leibniz rule.

2.3 Hopf algebra techniques

The essential ingredient for a Hopf algebra [15, 16] is the comultiplication Δ(α):
For the undeformed situation we define

Δ(α) = α⊗1+1⊗α. (2.17)

It allows us to write the Leibniz rule (2.9) in the Hopf algebra language:

δα(φ ·ψ) = μ{Δ(α)φ ⊗ψ}. (2.18)

In the deformed situation we use a twisted coproduct:

ΔF (α) = F (α⊗1+1⊗α)F−1,

F = e−
i
2 θ

ρσ ∂ρ⊗∂σ . (2.19)

Here F is a twist that has all the properties to define a Hopf algebra with ΔF (α) as
a comultiplication [17–24]. Details about Hopf algebra methods, twists, and twisted
Hopf algebras will be given in Chaps. 7 and 8. We can show that the transformation
(2.16) can be written in the form

δ �
α(φ �ψ) = iμ�{ΔF (α)φ ⊗ψ}, (2.20)

with the multiplication μ� defined in (2.2). Equation (2.20) defines the Leibniz rule
in terms of the twisted comultiplication and the product μ�. To show this we start
from Eq. (2.13) and write it with the explicit definition of the �-product:

δ �
α(φ �ψ) = iαaμ

{
e

i
2 θ

ρσ ∂ρ⊗∂σ (T aφ ⊗ψ+φ ⊗T aψ)
}

= i
∞

∑
n=0

1
n!

(
i
2

)n

θρ1σ1 . . .θρnσn
(
αaT a(∂ρ1 . . .∂ρnφ)(∂σ1 . . .∂σnψ)

+(∂ρ1 . . .∂ρnφ)αaT a(∂σ1 . . .∂σnψ)
)
. (2.21)
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This we now rewrite as follows:

δ �
α(φ �ψ) = iμ(α⊗1+1⊗α)e

i
2 θ

ρσ ∂ρ⊗∂σ φ ⊗ψ

= iμ
{

e
i
2 θ

ρσ ∂ρ⊗∂σ · e− i
2 θ

ρσ ∂ρ⊗∂σ (α⊗1+1⊗α)e
i
2 θ

ρσ ∂ρ⊗∂σ φ ⊗ψ
}

= iμ�{ΔF (α)φ ⊗ψ}. (2.22)

The last line is exactly (2.20).
Gauge fields can be included in this formalism as well. In the undeformed situ-

ation they are Lie algebra valued, Aμ(x) = Aa
μ(x)T a, and under infinitesimal gauge

transformations transform as follows:

δAμ = ∂μα+ iαa[T a,Aμ ]. (2.23)

Let us calculate the contribution of the gauge field to the Leibniz rule. As an example
we calculate

δ �
α(Aμ �φ) = μ�{ΔF (α)Aμ ⊗φ} (2.24)

and obtain

δ �
α(Aμ �ψ) = iαa ([T a,Aμ ]�ψ

)
+ iαa (Aμ �T aψ

)
+(∂μαa)T aψ

= iαa ((T aAμ)�ψ− (AμT a)�ψ
)

+iαa(AμT a)�ψ+(∂μαa)T aψ
= iαaT a(Aμ �ψ)+(∂μα)ψ. (2.25)

Now we define a covariant derivative

D�
μψ = ∂μψ− iAμ �ψ. (2.26)

It will transform covariantly

δ �
α(D�

μψ) = iαaT a(D�
μψ) = iX�

αa �T a(D�
μψ), (2.27)

if the vector field Aμ transforms as in (2.23)

δ �
αAμ = ∂μα+ iαa[T a,Aμ ] = ∂μα+ iX�

αa � [T a,Aμ ]. (2.28)

From (2.28) we see that a Lie algebra valued vector field remains Lie algebra valued
by the transformation (2.28).

2.4 Field equations

Now we proceed as in the undeformed situation. First we define the field strength
tensor:

Fμν = i[D�
μ

�, D�
ν ]
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= ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.29)

Here we see already that Fμν will not be Lie algebra valued even for Lie algebra-
valued vector fields. Namely, assuming that the gauge field is Lie algebra valued
Aμ = Aa

μT a the field strength tensor Fμν (2.29) can be decomposed in two parts

Fμν = Fa
1μνT a +Fab

2μν
1
2
{T a,T b}. (2.30)

Since anticommutator of generators {T a,T b} is not Lie algebra valued in general,
the full Fμν will not be Lie algebra valued in general.

Using the twisted gauge transformations of the gauge field Aμ (2.28) and the
deformed Leibniz rule (2.16) we derive the transformation law of the field strength
tensor:

δ �
αFμν = iX�

αa � [T a,Fμν ] = i[α,Fμν ]. (2.31)

The expression Fμν �Fμν = ημρηνσFμνFρσ will transform accordingly

δ �
α(Fμν �Fμν) = iX�

αa � [T a,Fμν �Fμν ] = i[α,Fμν �Fμν ]. (2.32)

Hint, use the transformation law (2.31) and the deformed Leibniz rule (2.16).
The Lagrangian that is invariant under the twisted gauge transformations (2.28)

we define as in the gauge theory on commutative space:

L =
1
c

Tr(Fμν �Fμν), (2.33)

where c is an arbitrary constant. It is invariant and it is a deformation4 of the unde-
formed Lagrangian of a gauge theory.

To speak about an action we have to define integration. We take the usual integral
over x on the commutative space and we can verify that

∫
d4x f �g =

∫
d4x g� f =

∫
d4x f ·g (2.34)

by partial integration. This is called the trace property of the integral or cyclicity .
Equation (2.34) allows a cyclic permutation of the fields under the integral. To

derive the field equations we use the usual Leibniz rule for the functional variation,
that is, we vary the field where it stands. The trace property is then used to derive
the final result. As an example we look at the action for the gauge field

S =
1
c

∫
d4x Tr(Fμν �Fμν). (2.35)

4 One can expand the �-products appearing in the Lagrangian (2.33) and check that in the zeroth or-
der in the deformation parameter θρσ the Lagrangian of the undeformed theory is obtained. Higher
order terms give new contributions due to the noncommutativity (deformation) of the commutative
space.
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From the trace property we compute

δS
δAρ(z)

=
1
c

δ
δAρ(z)

∫
d4x Tr(Fμν �Fμν)

=
1
c

∫
d4x Tr

((
δFμν(x)
δAρ(z)

)
�Fμν +Fμν �

(
δFμν(x)
δAρ(z)

))

=
2
c

∫
d4x Tr

δFμν(x)
δAρ(z)

�Fμν(x) (2.36)

=
2
c

∫
d4x Tr

δ
δAρ(z)

(∂μAν −∂νAμ − i[Aμ �, Aν ])�Fμν(x)

=
4
c

∫
d4x Tr

δ
δAρ(z)

(∂μAν − iAμ �Aν)�Fμν(x)

because Fμν is antisymmetric. Then we have

δS
δAρ(z)

=
4
c

∫
d4x Tr{−δ (4)(x− z)� (∂μFμρ)

−iδ (4)(x− z)�Aμ �Fρμ − iAμ �δ (4)(x− z)�Fμρ} (2.37)

= −4
c

∫
d4x Trδ (4)(x− z)�{∂μFμρ − iAμ �Fμρ + iFμρ �Aμ}.

The field equations follow after using (2.34)

δS
δAρ(z)

= −4
c

∫
d4x Trδ (4)(x− z){∂μFμρ − iAμ �Fμρ + iFμρ �Aμ}. (2.38)

These are exactly the equations we have expected from covariance:

D�
μFμν = ∂μFμν − i[Aμ �, Fμν ] = 0. (2.39)

We have already seen that Fμν cannot be Lie algebra valued. From the field equa-
tions (2.39), considered as equations for the vector potential Aμ , we see that Aμ
cannot be Lie algebra valued either. We have to consider Fμν and Aμ to be envelop-
ing algebra valued. The additional vector fields (coming from the non-Lie algebra-
valued parts) will introduce additional ghosts in the Lagrangian. To eliminate them
we have to enlarge the symmetry to be enveloping algebra valued as well. For sim-
plicity we assume α , Aμ , and Fμν to be matrix valued when the matrices act in the
representation space of T a.

From the field equations (2.39) follows a consistency equation because Fμν is
antisymmetric in μ and ν :

∂ν [Aμ �, Fμν ] = 0. (2.40)

To verify this condition we have to use the field equations (2.39). First we differen-
tiate (2.40)

∂ν [Aμ �, Fμν ] = [∂νAμ �, Fμν ]+ [Aμ �, ∂νFμν ]. (2.41)
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In the first term we replace ∂νAμ by 1
2 (∂νAμ −∂μAν) because Fμν is antisymmetric

in μ and ν . Then we express this term by Fμν according to (2.29):

1
2
(∂νAμ −∂μAν) =

i
2

Fνμ +
i
2
[Aν �, Aμ ]. (2.42)

The �-commutator [Fμν �, Fμν ] = Fμν � Fμν −Fμν � Fμν vanishes and we are left
with i

2 [[Aν �, Aμ ] �, Fμν ] for the first term in (2.41). For the second term in (2.41)
we use the field equations (2.39). Finally all terms left add up to zero if we use the
Jacobi identity. In all these equations Aμ and Fμν are supposed to be matrices. We
have suppressed the matrix indices.

A conserved current is found

jν = [Aμ �, Fμν ], ∂ν jν = 0. (2.43)

For θρσ = 0 this is the current of a non-abelian gauge theory on commutative
space.

2.5 Matter fields

Matter fields can be coupled covariantly to the gauge fields via a covariant deriva-
tive. We start from a multiplet of the gauge group ψA not necessarily irreducible.
The index A denotes the component of the field ψ in the representation space. The
transformation law of ψ is δ �

αψA = iX�
αAB

�ψB = iαABψB. For the usual gauge trans-
formations αAB will be Lie algebra valued. The covariant derivative is

(D�
μψ)A = ∂μψA − iAμAB �ψB. (2.44)

The gauge potential Aμ in now supposed to be matrix valued in the representation
space spanned by the matter fields.

For a spinor field
ψ̄αA � γμαβ (D�

μψ)A (2.45)

will be invariant and therefore suitable for a covariant Lagrangian.
We consider the Lagrangian

L =
1
c

Tr(Fμν �Fμν)+ ψ̄ � γμ(i∂μ +Aμ�)ψ−mψ̄ �ψ. (2.46)

We have suppressed the matrix indices.
The field equations are obtained from (2.46) by varying the fields in the same

way as in Sect. 2.4:

δL

δAρ
= ∂μFμρ

AB + i[Aμ �, Fρμ ]AB + γραβψβA � ψ̄αB = 0, (2.47)
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and for the matter fields

δL

δψ̄
= γμ(∂μψA − iAμAB �ψB)+ imψA = 0 (2.48)

δL

δψ
= (∂μψ̄Aγμ + iψ̄Bγμ � iAμAB)− imψ̄A = 0.

Again, Eq. (2.47) leads to a consistency relation that can be verified with the help
of the field equations. It is, however, important that the representation space for the
field ψ and the vector potential AμAB are the same. The representation space of the
matter fields determines the space for the gauge potentials.

We conclude that there is a conserved current:

jρAB = i[Aμ �, Fμρ ]AB − γραβψβA � ψ̄αB. (2.49)

We were again able to find a conserved current as a consequence of a deformed
symmetry. Even if we put the vector potential to zero there remains the part from
the matter field. There are conservation laws due to a deformed symmetry. It is
remarkable that we have found conserved currents in the twisted theory as well. In
the undeformed theory we can derive them with the help of the Noether theorem.
In the deformed theory this is not possible. Nevertheless the property that a theory
has a conserved current is preserved by a deformation. This is an important step to
convince ourselves that a deformed gauge theory has properties close to what we
need for physics.

2.6 Examples

1) Maxwell equations

We start from the simplest gauge theory based on U(1) and describing gauge
fields only. We proceed schematically. The transformation law of the gauge field
Aμ :

δ �
αAμ = ∂μα. (2.50)

The covariant derivative:

D�
μ = ∂μ − iAμ � . (2.51)

The field strength tensor:

Fμν = [D�
μ

�, D�
ν ] = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.52)

The Lagrangian:

L = −1
4

Fμν �Fμν . (2.53)



32 Julius Wess

The field equations:
∂ μFμν − i[Aμ �, Fμν ] = 0. (2.54)

Consistency equations:
∂ν [Aμ �, Fμν ] = 0. (2.55)

A schematic proof of the consistency condition:

[∂νAμ �, Fμν ]+ [Aμ �, ∂νFμν ] = (2.56)

=
i
2
[[Aν �, Aμ ] �, Fμν ]+ i[Aμ �, [Aν �, Fμν ]]. (2.57)

We have used the field equations and the fact that [Fμν �, Fμν ] = 0. The terms left
can now be rearranged

[[Aν �, Aμ ] �, Fμν ]+ [[Aμ �, Fμν ] �, Aν ]+ [[Fμν �, Aν ] �, Aμ ] (2.58)

and vanish due to the Jacobi identity.
We found a conserved current:

jν = [Aμ �, Fμν ], ∂ν jν = 0. (2.59)

2) Electrodynamics with one charged spinor field

Transformation law of the gauge field and the spinor field:

δ �
αψ = iαψ, δ �

αAμ = ∂μα. (2.60)

Covariant derivative:

D�
μ = (∂μ − iAμ�), D�

μψ = (∂μ − iAμ�)ψ. (2.61)

Field strength:
Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.62)

Lagrangian:

L = −1
4

Fμν �Fμν + ψ̄ � γμ(i∂μψ+Aμ �ψ)−mψ̄ �ψ. (2.63)

Field equations:

∂μFμρ + i[Aμ �, Fρμ ]+ γρψ � ψ̄ = 0,

γμ(∂μψ)− iγμAμ �ψ+ imψ = 0, (2.64)

(∂μψ̄)γμ + iψ̄γμ �Aν − imψ̄ = 0.
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Consistency condition:

∂ρ([Aμ �, Fρμ ]+ γρψ � ψ̄) = 0. (2.65)

Proof: As before, the spinor terms have to be added in the current and the field
equations.

Current:
jρ = [Aν �, Fρν ]+ γρψ � ψ̄ , ∂ν jν = 0. (2.66)

3) Electrodynamics with several charged fields

We try to formulate a model with one vector potential and differently charged
matter fields as we do in the undeformed situation. This amounts to introduce an
U(1) gauge-invariant action for the gauge potential and for the matter fields.

Let us consider the part of the vector potential first.
The transformation law is

δ �
αAμ = ∂μα. (2.67)

The covariant derivative
D�
μ = (∂μ − iAμ�) (2.68)

gives the following field strength tensor

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.69)

As an invariant Lagrangian we choose

LA = −1
4

Fμν �Fμν . (2.70)

Next we consider the matter fields ψr with charges gr, r = 1, . . . , n. They trans-
form as follows:

δ �
αψr = igrαψr. (2.71)

The covariant derivative depends on the charge of the field it acts on:

D�
μψr = (∂μ − igrAμ�)ψr. (2.72)

The U(1) gauge-invariant action can be chosen as follows:

Lψ =∑
r
ψ̄r � γμ

(
i(∂μψ)+grAμ �ψr)−mrψ̄r �ψr. (2.73)

As the total Lagrangian we take the sum

L = LA +Lψ . (2.74)

It is U(1) gauge invariant and it is a deformation of the usual electrodynamics with
different charged fields. This Lagrangian now leads to the field equations:
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∂μFμρ + i[Aμ �, Fρμ ]+∑
r

grγρψr � ψ̄r = 0,

γμ(∂μψ)− igrγμAμ �ψ+ imrψr = 0, (2.75)

∂μψ̄rγμ + iψ̄rγμ �grAν − imrψ̄r = 0.

The first of these equations gives rise to a consistency condition:

∂ρ
(

i[Aν �, Fρν ]+∑
r

grγρψr � ψ̄r
)

= 0. (2.76)

From a direct calculation, using the field equations, follows:

∂ρ
(

i[Aν �, Fρν ]+∑
r

grγρψr � ψ̄r
)

(2.77)

= −∑
r

(g2
r −gr)[Aμ �, γμψr � ψ̄r]. (2.78)

The consistency condition is only satisfied if gr = g2
r or gr = 1. With one vector

potential we can in a U(1) model only describe particles with one charge. There can
be an arbitrary number of matter fields with this charge. This is different from the
usual undeformed situation. There the commutator in (2.69) vanishes and does not
give rise to an inconsistency.

This is not surprising, we forgot that the vector potential has at least to be en-
veloping algebra valued. This is demonstrated in the next example.

4) Electrodynamics of a positive and a negative charged matter field

The gauge group is supposed to be U(1) and the matter fields are in the multiplet
that transforms as follows:

δ �
αψ = iαQψ, Q =

(
1 0
0 −1

)
. (2.79)

As outlined in Sect. 2.5, the gauge potential has to be in the same representation of
the enveloping algebra as the matter fields are.

The enveloping algebra has two elements:

I and Q, Q2 = 1. (2.80)

We generalize the transformation law (2.79) to be enveloping algebra valued

δΛψ = iΛψ, Λ = λ0(x)I +λ1(x)Q. (2.81)

The vector potential Aμ has the analogous decomposition

Aμ = Aμ(x)I +Bμ(x)Q. (2.82)
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The covariant derivative is

D�
μψ = (∂μ − iAμ�)ψ = (∂μ − iAμ(x)� I − iBμ(x)�Q)ψ. (2.83)

The field strength can also be decomposed in the enveloping algebra

Fμν = Fμν I +GμνQ. (2.84)

From the definition of the field strength

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ], (2.85)

follows

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]− i[Bμ �, Bν ],
Gμν = ∂μBν −∂νBμ − i[Aμ �, Bν ]− i[Bμ �, Aν ]. (2.86)

The matter fields couple to the vector potential via the covariant derivative

D�
μψ = (∂μ − iAμ�)ψ

= (∂μ − iAμ(x)� I − iBμ(x)�Q)ψ. (2.87)

This leads to the Lagrangian

L = −1
4
F μν �Fμν + ψ̄ � γμ

(
i(∂μψ)+Aμ �ψ

)
−mψ̄ �ψ (2.88)

and the field equations

δL

δAρ
: ∂μFμρ + i[Aμ �, Fρμ ]+ i[Bμ �, Gρμ ]+ iγρψ � ψ̄ = 0,

δL

δBρ
: ∂μGμρ + i[Bμ �, Fρμ ]+ i[Aμ �, Gρμ ]+ iγρψA � ψ̄BQAB = 0,

δL

δψ̄
: γμ(∂μψ)− iγμAμ �ψ+mψ = 0,

δL

δψ
: ∂μψ̄γμ + iψ̄γμ �Aμ −mψ̄ = 0. (2.89)

We obtain two consistency equations that render two transformation laws, in agree-
ment with the extended symmetry (2.81)

jρA = i[Aμ �, Fρμ ]+ i[Bμ �, Gρμ ]+ γρψA � ψ̄A, (2.90)

with
∂ρ jρA = 0 (2.91)

and
jρB = i[Bμ �, Fρμ ]+ i[Aμ �, Gρμ ]− iγρψA � ψ̄BQAB. (2.92)
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We learn that the deformed gauge theory leads to a theory with a larger symmetry
structure, the enveloping algebra structure. This structure survives in the limit θ →
0. We find the corresponding conservation laws and gauge transformations needed
for a consistent gauge theory.
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11. P. Aschieri, M. Dimitrijević, F. Meyer, S. Schraml and J. Wess, Twisted gauge theories, Lett.

Math. Phys. 78, 61–71 (2006), [hep-th/0603024]. 24, 25
12. D. V. Vassilevich, Twist to close, Mod. Phys. Lett. A 21, 1279 (2006), [hep-th/0602185]. 24
13. J. Wess, Deformed Coordinate Spaces; Derivatives, in Proceedings of the BW2003 Work-

shop, Vrnjacka Banja, Serbia (2003), 122–128, World Scientific (2005), [hep-th/0408080]. 25
14. M. Chaichian, P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpretation

of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B
604, 98 (2004), [hep-th/0408069]. 25

15. E. Abe, Hopf algebras, Cambridge University Press, Cambridge (1980). 26
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Chapter 3
Einstein Gravity on Deformed Spaces

Julius Wess

A differential calculus, differential geometry, and the Einstein gravity theory are
studied on noncommutative spaces. Noncommutativity is formulated in the star
product formalism. The basis for the gravity theory is the infinitesimal algebra of
diffeomorphisms. Considering the corresponding Hopf algebra we find that the de-
formed gravity is based on a deformation of the Hopf algebra.

3.1 Introduction

Gravity theories and differential geometry have been developed on differential man-
ifolds where the functions form an algebra by pointwise multiplication:

μ{ f ⊗g} = f ·g. (3.1)

In this chapter I want to show that these theories can be generalized by deforming
this product [1, 2]. There are many deformations of the pointwise product to a star
product [3–6]; the simplest and most discussed is the Moyal product [7, 8] which is
introduced in Chap. 1:

μ�{ f ⊗g} ≡ f �g = μ{e
i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g}. (3.2)

This product can be shown to be associative but it is not commutative. It is defined
for C∞ functions in general as a formal power series in θρσ .1 Evaluated on the
functions xμ and xν (3.1) yields

xμ � xν − xν � xμ ≡ [xμ �, xν ] = iθμν . (3.3)

1 Remember that like in the previous chapter the deformation parameter h is absorbed in θρσ .

Wess, J.: Einstein Gravity on Deformed Spaces. Lect. Notes Phys. 774, 39–52 (2009)
DOI 10.1007/978-3-540-89793-4 3 c© Springer-Verlag Berlin Heidelberg 2009
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These, mathematically, are the canonical commutation relations of quantum me-
chanics but here we postulate them for the configuration space.

A differential calculus on noncommutative spaces has been developed [9–11].
Considering differentiation as a map from the space of functions to the space of
functions

∂ρ : f 
→ ∂ρ f , (3.4)

it can be generalized to an algebra map.2

Recognizing that f �g is a function, again one finds the deformed Leibniz rule:

∂ρ( f �g) = (∂ρ f )�g+ f � (∂ρg)+ f (∂ρ�)g. (3.5)

In the case of the Moyal product the �-operation is x-independent and we obtain the
usual Leibniz rule.3 To indicate that the derivative now is a map from the deformed
algebra of functions A �

x to the deformed algebra of functions A �
x we denote it by

∂ �

∂ �
ρ f ≡ ∂ρ f

∂ �
ρ ( f �g) = (∂ �

ρ f )�g+ f � (∂ �
ρg). (3.6)

These equations establish a well-defined differential calculus on the deformed space
of functions. They allow us to consider ∂ �

ρ as a linear operator with the properties:

∂ �
ρ ∂ �

σ = ∂ �
σ∂ �

ρ (3.7)

and

∂ �
ρ f = (∂ �

ρ f )+ f∂ �
ρ

= (∂ρ f )+ f∂ρ . (3.8)

The following treatment of deformed differential geometry will be based on
Eqs. (3.2), (3.7), and (3.8). It is only Eq. (3.4) that defines the ordinary derivative of
a function that has to be used as an a priori input. The generalization to the deformed
situation is essentially algebraic in nature.

3.2 Differential operators

We now consider the extension of the algebra of functions (deformed or unde-
formed) by the algebra of derivatives. From the Leibniz rule (3.8) follows that there
is a basis where the derivatives are all at the right-hand side of the functions. An
element of the extended algebra in this basis we call a differential operator [1].

2 This was discussed in Chap. 1 and will be mentioned again in Chap. 4, Sect. 4.2.
3 In this chapter we only consider the θ -deformed space which was introduced and discussed in
some detail in Chap. 1.
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On the undeformed algebra of functions we write

D{d} = ∑
r≥0

dρ1...ρr
r ∂ρ1 . . .∂ρr . (3.9)

On the deformed algebra of functions we write

D�
{d} = ∑

r≥0
dρ1...ρr

r ∂ �
ρ1

. . .∂ �
ρr

. (3.10)

A differential operator is characterized by the coefficient functions dr. This is indi-
cated by {d}. We shall frequently omit this indication and write D for a differential
operator, with coefficient function dr and D ′ for d′

r.
Differential operators can be multiplied using the algebraic properties (3.1) or

(3.2) in the deformed case and the relations (3.7) and (3.8).
The product can always be expressed in terms of differential operators by re-

ordering it with the help of the Leibniz rule. In this sense the differential operators
form an algebra in both cases, deformed and undeformed. As in Chap. 1, we call
A D{d} the undeformed algebra of differential operators and A �D�

{d} the deformed

one4. There is a map from the operators A D{d} to the operators A �D�
{d} that is an

algebra isomorphism

X� : A D{d} → A �D�
{d} . (3.11)

To define this map we let the differential operators act on a function g:

Dg = ∑
r≥0

dρ1...ρr
r

(
∂ρ1 . . .∂ρr g

)
, (3.12)

or
D� �g = ∑

r≥0
dρ1...ρr

r �
(
∂ �
ρ1

. . .∂ �
ρr

g
)

. (3.13)

Given an operator D we construct a new operator X�
D such that its star action equals

the undeformed action of the initial operator D . For any function g,

X�
D �g = Dg. (3.14)

Because X�
D �g is a function we can apply X�

D̃
once more:

X�
D̃

� (X�
D �g) = (X�

D̃
�X�

D )�g. (3.15)

The left-hand side can also be evaluated by using (3.14) consecutively:

X�
D̃

� (X�
D �g) = X�

D̃
� (Dg) = D̃Dg

= X�
(D̃D)

�g. (3.16)

4 For example, the deformed product of the differential operators given by D = dρ∂ρ and D ′ =
d′σ1σ2∂σ1∂σ2 is D �D ′ = dρ � (∂ρd′σ1σ2 )∂σ1∂σ2 +dρ �d′σ1σ2∂ρ∂σ1∂σ2 .
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We conclude
X�

D̃
�X�

D = X�
(D̃D)

. (3.17)

Multiplying g pointwise with a function f forms a subalgebra of D . We shall
now construct the operator X�

f explicitly for this case starting from (3.1):

f ·g = μ{ f ⊗g} = μ{e
i
2 θ

ρσ ∂ρ⊗∂σ e−
i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g}
= μ�{e−

i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g}. (3.18)

More explicitly:

X�
f = ∑

r≥0

1
r!

(
− i

2

)r

θρ1σ1 . . .θρrσr(∂ρ1 . . .∂ρr f )∂ �
σ1

. . .∂ �
σr

. (3.19)

This operator has the properties

X�
f �g = f ·g (3.20)

and
X�

f �X�
g = X�

f g. (3.21)

It is given by a power series in θ that at zeroth order is the identity. We thus have
X�

f = f +O(θ) and X� is therefore an invertible map.
The algebra of functions with pointwise multiplication (i.e., the subalgebra of

undeformed zeroth-order differential operators) is mapped into the star-deformed
algebra of the differential operators X�

f . This is a subalgebra of the deformed algebra
of differential operators A �D�

{d}.
The Lie algebra of infinitesimal (local) diffeomorphisms on Ax is generated by

vector fields

ξ = ξ μ(x)∂μ ,

[ξ ,η ] =
(
ξ μ(∂μηρ)−ημ(∂μξρ)

)
∂ρ

= (ξ ×η)ρ∂ρ ≡ ξ ×η . (3.22)

The commutator of two vector fields is a vector field again. This is not the case for
the star commutator because the �-product of two functions does not commute. The
differential operators X�

ξ , however, will form an algebra under the star commutator:

[X�
ξ

�, X�
η ] = X�

ξ×η . (3.23)

This follows from (3.17).
The operator X�

ξ satisfies
X�
ξ �g = ξg, (3.24)

for any function g, and is easily constructed starting from (3.22)

ξg = ξ μ∂μg = ξ μ(∂μg) = X�
ξ μ � (∂ �

μg). (3.25)
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Thus, we find
X�
ξ = X�

ξ μ �∂ �
μ . (3.26)

Again the usual Lie algebra of infinitesimal diffeomorphisms (first-order differ-
ential operators with Lie bracket given by the commutator in A D{d}) is mapped
into the Lie algebra of the differential operators X�

ξ , where the bracket is given by
the commutator in A �D�

{d},

ξ 
→ X�
ξ

[X�
ξ

�, X�
η ] = X�

ξ×η . (3.27)

This is the starting point for the construction of a tensor calculus on tensor fields.

3.3 Tensor fields

The classical theory of gravity is based on invariance under coordinate transforma-
tions.5 This leads to the concept of scalar, vector, and tensor fields that transform
under infinitesimal general coordinate transformation as follows:

scalar: δξ φ(x) = −ξφ ,
covariant vector: δξVμ(x) = −ξVμ − (∂μξρ)Vρ ,
contravariant vector: δξV μ(x) = −ξV μ +(∂ρξ μ)V ρ

(3.29)

and similarly for other tensor fields.6 Note that in (3.29) the variation δξ stands for
δξ φ = φ ′(x)−φ(x).

The concept of coordinate transformations is difficult to generalize to deformed
spaces, but the transformation laws of fields are representations of the Lie algebra
of infinitesimal diffeomorphisms, that we just learned how to deform. Recalling
the transformation law (3.24) of functions under deformed infinitesimal diffeomor-
phisms we define the following transformation laws of fields under the deformed
algebra of diffeomorphisms:

δ �
ξ φ = −X�

ξ �φ = −ξφ ,

δ �
ξVμ = −X�

ξ �Vμ −X�
(∂μξρ ) �Vρ = −ξVμ − (∂μξρ)Vρ ,

δ �
ξV μ = −X�

ξ �V μ +X�
(∂ρξ μ ) �V ρ = −ξV μ +(∂ρξ μ)V ρ (3.31)

and similarly for other tensor fields.

5 Infinitesimal coordinate transformations are given by

xμ → x′μ = xμ +ξ μ (x), (3.28)

with infinitesimal ξ μ (x).
6 For example, for a covariant tensor of rank 2 we have

δξTμν (x) = −ξTμν − (∂μξρ )Tρν − (∂νξρ )Tμρ . (3.30)
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To construct Lagrangians we have to know how the �-product of fields trans-
forms. These products should transform as tensor fields again, e.g., the �-product of
two scalar fields should transform as a scalar field again

δ �
ξ (φ �ψ) = −X�

ξ � (φ �ψ) (3.32)

= −ξ (φ �ψ).

A direct calculation shows that this is identical to

δ �
ξ (φ �ψ) = −μ�{FΔ(ξ )F−1φ ⊗ψ}. (3.33)

Here Δ(ξ ) is the usual comultiplication Δ on the vector field ξ ,

Δ(ξ ) = ξ ⊗1+1⊗ξ . (3.34)

F is called a twist and it is the element

F = e−
i
2 θ

ρσ ∂ρ⊗∂σ . (3.35)

The right-hand side of (3.32) and (3.33) can be calculated in a power series expan-
sion in θ and will be found to be the same.

The advantage of the expression (3.33) is that it links to the formalism of con-
structing new Hopf algebras (symmetries) by deforming via a twist existing ones
[12–18], see Chap. 8 for a short introduction and Chap. 7 for more details concern-
ing Hopf algebras. Many results are known there [19, 20]. We first have to establish
that the twist F defined in (3.35) really satisfies the conditions for a twist. This is
the case (see a proof in (8.8) and (8.9)).

Then we can use the twist to deform the Leibniz rule for arbitrary tensor fields.
The procedure is as follows:

First consider the coproduct (also called comultiplication) for the undeformed
transformations

Δ(δξ ) = δξ ⊗1+1⊗δξ , (3.36)

where the variations δξ are expressed by differential operators such that

δξ (φ ⊗ψ) = (δξ φ)⊗ψ+φ ⊗ (δξψ) (3.37)

for any two tensor fields, this follows from the usual Leibniz rule of infinitesimal
variations. This coproduct can be twisted

ΔF (δξ ) = FΔ(δξ )F−1. (3.38)

Finally define the deformed Leibniz rule

δ �
ξ (φ �ψ) = μ�{ΔF (δξ )φ ⊗ψ}. (3.39)
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This is not limited to scalar fields but applies also to the �-product of generic tensor
fields φ = T μ1...μm

ν1...νn and ψ = Tσ1...σs
ρ1...ρr .

We can convince ourselves that this Leibniz rule has the properties demanded at
the beginning of this section, i.e., that �-products of tensor fields transform as tensor
fields (cf. (3.33) for scalar fields).

The deformed coproduct ΔF defines a new Hopf algebra. As a Hopf algebra the
algebra of infinitesimal diffeomorphisms is deformed!

Note

More explicitly the deformed Leibniz rule reads

δ �
ξ (φ �ψ) = μ�{ΔF (δξ )φ ⊗ψ}

= (δ �
ξ φ)�ψ+φ � (δ �

ξ ψ)

+
∞

∑
n=1

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn{δ �
(∂ρ1 ...∂ρn ξ )φ � (∂σ1 . . .∂σnψ)

+(∂ρ1 . . .∂ρnφ)�δ �
(∂σ1 ...∂σn ξ )ψ}. (3.40)

The calculation in order to establish the second equality is very similar to the one we performed in
order to find the Leibniz rule for the deformed gauge transformations in Chap. 1, Sect. 1.6.

Let us see in an example that by using the deformed comultiplication the �-product of two
tensor fields T μ1...μm

ν1...νn �Tσ1...σs
ρ1...ρr transforms like the tensor field T μ1...μmσ1...σs

ν1...νnρ1...ρr . Consider the �-product
of a scalar and a vector field

δ �
ξ (φ �Vμ ) = μ�

{
e−

i
2 θ

ρσ ∂ρ⊗∂σ
(
δ �
ξ ⊗1+1⊗δ �

ξ

)
e

i
2 θ

ρσ ∂ρ⊗∂σ (φ ⊗Vμ )
}

= μ�

{
δ �
ξ φ ⊗Vμ +φ ⊗δ �

ξVμ

− i
2
θρσ

((
[∂ρ ,δ �

ξ ]φ
)
⊗ (∂σVμ )+(∂ρφ)⊗

(
[∂σ ,δ �

ξ ]Vμ
))

+O(θ 2)
}

= δ �
ξ φ �Vμ +φ �δ �

ξVμ

− i
2
θρσ

(
(δ �
∂ρ ξ φ)� (∂σVμ )+(∂ρφ)� (δ �

∂σ ξVμ )
)

+O(θ 2)

= −ξ (φ �Vμ )− (∂μξλ )(φ �V λ )

= −X�
ξ � (φ �Vμ )−X�

(∂μξλ ) � (φ �Vλ ). (3.41)

In the first line the definition of the deformed Leibniz rule is used and expanded to the first order in

the deformation parameter θρσ . Then all the �-products were expanded and terms were collected

in such a way that the line above the last is obtained. In the last line the result is rewritten in terms

of higher order differential operators X�. Comparing (3.41) with the transformation law of a vector

field (3.31) we see that φ �Vμ indeed transforms as a vector field.
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3.4 Einstein–Hilbert gravity

The Einstein–Hilbert theory of gravity can now be constructed following its presen-
tation in a textbook.

1) Covariant derivatives

The covariant derivative of a tensor field should again transform as a tensor field.
This can be done with the help of a connection Γ . For a covariant vector field

Dμ �Vν = ∂ �
μVν −Γ α

μν �Vα . (3.42)

For (3.42) to be a covariant derivative

δ �
ξDμ �Vν = −X�

ξ � (Dμ �Vν)−X�
(∂μξρ )(Dρ �Vν)−X�

(∂νξρ )(Dμ �Vρ)

= −ξ (Dμ �Vν)− (∂μξρ)(Dρ �Vν)− (∂νξρ)(Dμ �Vρ) (3.43)

the connection has to transform as follows7:

δ �
ξ Γ

α
μν = −X�

ξ �Γ α
μν −X�

(∂μξρ ) �Γ
α
ρν −X�

(∂νξρ ) �Γ
α
μρ +X�

(∂ρξα ) �Γ
ρ
μν −∂μ∂νξα .

(3.44)
This can easily be generalized to arbitrary tensor fields.8

2) Curvature and torsion

The curvature and torsion tensors can be defined as usual [21]

[Dμ �, Dν ]�Vρ = Rμνρ
σ �Vσ +Tμν

α �Dα �Vρ . (3.46)

They can be expressed in terms of the connection:

Rμνρ
σ = ∂ �

νΓ σ
μρ −∂ �

μΓ σ
νρ +Γ β

νρ �Γ σ
μβ −Γ

β
μρ �Γ σ

νβ , (3.47)

Tμν
α = Γ α

νμ −Γ α
μν . (3.48)

From the transformation law of the connection (3.44) follows that curvature and
torsion transform like tensors if the deformed Leibniz rule (3.39) is used. From now

7 Hint, use (3.43), the deformed Leibniz rule (3.40), and the fact that δ �
ξ (∂μVν ) = ∂μ (δ �

ξVν ).
8 In the commutative case this generalization is done via the Leibniz rule for the covariant deriva-
tive. In the deformed case the usual Leibniz rule for the covariant derivative does not hold, check
for example Dλ � (V μ �Vμ ). Instead we define the covariant derivative on a tensor field to be

Dλ �T ν1...νr
μ1...μp = ∂λT ν1...νr

μ1...μp −Γ α
λμ1

�T ν1...νr
α...μp −·· ·−Γ α

λμp
�T ν1...νr

μ1...α

+Γ ν1
λα �Tα...νr

μ1...μp
+ · · ·+Γ νr

λα �T ν1...α
μ1...μp . (3.45)
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on we assume for simplicity that Tμνα = 0, i.e., that the connectionΓ σ
μρ is symmetric

in its lower indices.

3) Metric tensor

The relevant dynamical variable in gravity is the metric tensor. It is introduced
as a covariant symmetric tensor of rank two:

δ �
ξGμν = −X�

ξ �Gμν −X�
(∂μξρ ) �Gρν −X�

(∂νξρ ) �Gμρ . (3.49)

For θ = 0 we identify it with the usual metric field:

Gμν

∣∣∣
θ=0

= gμν . (3.50)

Next we have to construct the �-inverse of the metric9:

Gμν �Gνρ� = δρμ . (3.51)

Let us first construct the �-inverse of a function that is invertible in the undeformed
algebra:

f · f−1 = 1. (3.52)

The star inverse f−1� is defined by

f � f−1� = 1. (3.53)

It exists as a geometric series because f−1 exists, see Chap. 1. The additional terms
are a power series in θ . To find f−1� in a compact version we start from

f � f−1 = 1+O(θ),

(
f � f−1)−1�

=
(
1+ f � f−1 −1

)−1�

=
∞

∑
n=0

(
1− f � f−1)n�

(3.54)

= 1︸︷︷︸+1− f � f−1

︸ ︷︷ ︸+1−2 f � f−1 + f � f−1 � f � f−1

︸ ︷︷ ︸+ · · · .

n = 0 n = 1 n = 2

The star at the nth power means that all the products are star products. By definition
we know that

( f � f−1)� ( f � f−1)−1� = 1. (3.55)

The star multiplication is associative. We use this for Eq. (3.55) and write it in the
form

9 The �-inverse of the metric tensor Gμν is a function and not a differential operator.



48 Julius Wess

f �
(

f−1 � ( f � f−1)−1�
)

= 1. (3.56)

It follows that
f−1� = f−1 � ( f � f−1)−1�. (3.57)

The factor ( f � f−1)−1� has been calculated in (3.54) as a power series expansion in
f and f−1. We insert this into (3.57) and find that f−1� can be expressed in f and
f−1.

To invert the metric tensor we follow the analogous procedure. Equations

Gμν ·Gνρ = δρμ ,

Gμν �Gνρ� = δρμ (3.58)

are the defining equations for Gμν and Gμν� 10. For Gμν� we find

Gμν� = Gμρ � (G�G−1)−1� ν
ρ , (3.59)

where G and G−1 are short for the matrices Gμν and Gμν , respectively. We also can
show that

(G�G−1)−1� = ∑
n≥0

(
1−G�G−1)n�

. (3.60)

Because the �-product is not commutative Gμν� will be not symmetric in μ and ν .
It can now be shown explicitly from the transformation law (3.49) for Gμν that

Gμν� transforms as a contravariant tensor of rank 2.
In formulating the Einstein theory we meet the determinant and the square root of

the determinant. As it is more difficult to generalize the square root to a �-square root
we first introduce the vielbein as the “square” root of the metric tensor. It consists
of four covariant vector fields E a

μ that form the metric:

Gμν =
1
2

(
E a
μ �E b

ν +E a
ν �E b

μ

)
ηab. (3.61)

As the �-product is noncommutative we have symmetrized Gμν explicitly. For the
vielbein fields we demand in analogy with (3.50)

E a
μ

∣∣∣
θ=0

= e a
μ . (3.62)

Since E a
μ transforms as a vector

δ �
ξE a

μ = −X�
ξλ � (∂λE a

μ )−X�
∂μξλ

E a
λ , (3.63)

10 Both the �-inverse Gμν� and the usual inverse Gμν transform as contravariant tensors of rank
2. Hint: use (3.49), (3.58), and the deformed Leibniz rule in the case of Gμν � Gνρ� and the usual
Leibniz rule in the case of GμνGνρ . We also notice that in the zeroth order in θρσ both Gμν and
Gμν� are equal to the commutative metric tensor gμν .
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it follows that Gμν transforms like a tensor, provided that the deformed Leibniz rule
(3.40) is used. The �-determinant of the vielbein is defined as follows:

E� = det�E a
μ =

1
4!
εμ1...μ4εa1...a4 E a1

μ1 � · · ·�E a4
μ4 . (3.64)

The star on E� and det� indicates that all the multiplications are �-multiplications.
This normalization was chosen such that

det�E a
μ

∣∣∣
θ=0

= dete a
μ . (3.65)

The second ε-tensor is necessary because the �-product is noncommutative.
The important property of the determinant is that it transforms as a scalar density:

δ �
ξE� = −X�

ξ �E� −X�
(∂μξ μ ) �E�. (3.66)

This is a consequence of the transformation law of the vielbein (3.63). This justifies
the definition (3.64) of the �-determinant.

We now have all the ingredients we need to proceed for the formulation of the
Einstein–Hilbert dynamics.

4) Christoffel symbol

We demand that the covariant derivative of Gμν vanishes:

Dα �Gβγ = ∂ �
αGβγ −Γ ρ

αβ �Gργ −Γ ρ
αγ �Gβρ = 0. (3.67)

We permute the indices, assume that Gαβ is symmetric, use (3.58) and obtain by
following the analogous procedure of the classical case:

Γ σ
αβ =

1
2

(
∂ �
αGβγ +∂ �

βGαγ −∂ �
γ Gαβ

)
�Gγσ�. (3.68)

The connection is entirely expressed in terms of Gαβ . In this case we call Γ σ
αβ the

Christoffel symbol of the metric connection.
Again the transformation law of the connection (3.44) follows from the transfor-

mation law of Gαβ .

5) Ricci tensor and curvature scalar

We obtain the Ricci tensor by summing the upper index with one of the three
lower indices of the curvature tensor (3.47). As the curvature tensor is antisymmetric
in the first two indices we have only two choices left. Summing the second index is
a deformation of the classical Ricci tensor:

Rμν = Rμσν
σ . (3.69)
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The result Rμνσσ vanishes in the commutative limit θ → 0. Nevertheless, we could
add such a term to the Ricci tensor (3.69) and obtain another deformation of the
classical Ricci tensor.

We see that the deformation of the classical theory is not unique. Terms that are
covariant and vanish for θ → 0 are quite possible. To really make the deformation
unique an additional requirement has to be added. We take simplicity and define the
Ricci tensor by (3.69).11

The curvature scalar we define by contraction12 with Gμν�

R = Gμν� �Rμν . (3.70)

Again, as Gμν� is not symmetric and the �-product is noncommutative (3.70) is a
choice.

We can now show by starting from the tensor Gμν that the curvature scalar trans-
forms as a scalar field

δ �
ξR = −X�

ξ �R = −ξ μ(∂μR). (3.71)

6) Lagrangian

The curvature scalar multiplied by the determinant E� transforms like a scalar
density. From (3.71) and (3.66) it follows that

δ �
ξ (E� �R) = −∂ �

μ

(
X�
ξ μ � (E� �R)

)
. (3.72)

To define an action and the variational principle to find the field equation we have
to give a definition for the integral. A possible definition is

∫
f =

∫
d4x f , (3.73)

i.e., we use the usual integral on commutative space (cf. Chap. 2). This integral has
the trace property, which can be checked by partial integration

11 Let us look at the symmetries of the curvature tensor (3.47) and the Ricci tensor (3.69). The
curvature tensor is antisymmetric in the first two indices, but Rμνρσ = Rμνρλ � Gσλ is not anti-
symmetric in ρ and σ . Also we have Rμνρσ �= Rρσμν . From this it follows that Rμν = Rμσνσ is not
symmetric in μ and ν . As discussed above, Rμν is also not unique, one can add the antisymmetric
part Rμνσ σ to it without spoiling the commutative limit.
12 Contraction of a tensor Fαβ is done with the noncommutative metric tensor Gμν�. However,
since the �-product is not commutative expressions Gμν� � Fμν and Fμν � Gμν� will in general be
different. An example is the definition of the scalar curvature (3.70). This definition is not unique,
we could have chosen also R = Rμν �Gμν� or a symmetrized formula R = 1/2(Gμν� �Rμν +Rμν �
Gμν�). It is important that all these choices have the correct commutative limit (when θ → 0 they
should reduce to the scalar curvature of the commutative space). Also they all have to transform as
scalars under the deformed diffeomorphisms. Contraction (pairing) is also discussed in the end of
Sect. 8.2.2.
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∫
d4x f �g =

∫
d4x g� f . (3.74)

A suitable13 action for a gravity theory on deformed spaces is

SEH =
1
2

∫
d4x (E� �R+ c.c.). (3.75)

A reminder: By all the transformation laws of products of fields the deformed
Leibniz rule (3.39) has to be used.

The trace property of the integral (3.73) allows us to define a variational principle,
see Chaps. 2 and 4 for more details. This leads to deformed gravity equations.
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Chapter 4
Deformed Gauge Theory: Twist Versus
Seiberg–Witten Approach

Marija Dimitrijević

In this chapter we discuss two possible ways of introducing gauge theories on
noncommutative spaces. In the first approach the algebra of gauge transformations
is unchanged, but the Leibniz rule is changed (compared with gauge theories on
commutative space). Consistency of the equations of motion requires enveloping
algebra-valued gauge fields, which leads to new degrees of freedom. In the second
approach we have to go to the enveloping algebra again if we want noncommu-
tative gauge transformations to close in the algebra. However, no new degrees of
freedom appear here because of the Seiberg–Witten map. This map enables one to
express noncommutative gauge parameters and fields in terms of the corresponding
commutative variables.

4.1 Introduction

In previous chapters a way to deform commutative spacetime was introduced. The
starting point is an abstract algebra of noncommuting coordinates. Then one uses
the Poincaré–Birkhoff–Witt property to map this algebra into a space of commuting
coordinates with a new noncommutative product called �-product. This product can
be expanded in orders of the deformation parameter which is supposed to be of the
order of Planck length that is very small. In the zeroth order of the expansion the
usual pointwise product is obtained. Based on this approach noncommutative gauge
theories and a noncommutative theory of gravity are formulated in the previous
chapters.

Gauge theories on noncommutative spaces (NC spaces) are formulated using the
twist approach in Chap. 2. Especially, U(1) gauge theory coupled with matter is
discussed in detail. The problem of charge quantization that arises in this approach
is solved by going to the enveloping algebra of U(1). In this chapter we continue
analyzing gauge theories on NC spaces. As in the previous chapters we work with
the simplest example of noncommutative spaces, the canonically deformed space

Dimitrijević, M.: Deformed Gauge Theory: Twist Versus Seiberg–Witten Approach. Lect. Notes Phys. 774, 53–72 (2009)
DOI 10.1007/978-3-540-89793-4 4 c© Springer-Verlag Berlin Heidelberg 2009
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or θ -deformed space. In Sect. 4.2 we repeat some basic properties of this space. In
Sects. 4.3 and 4.4 we present two different ways to introduce gauge theories on the
θ -deformed space and we compare them. In Sect. 4.3 twisted non-abelian gauge the-
ories [1, 2] are discussed and equations of motion for the pure Yang–Mills action are
derived. Consistency of these equations enforces enveloping algebra-valued gauge
fields. In Sect. 4.4 we turn to Seiberg–Witten gauge theories which are another
way of introducing gauge theories on NC spaces. Seiberg–Witten gauge theories
are based on the Seiberg–Witten map (SW map) between commutative and non-
commutative gauge transformations and fields. This map was initially introduced
for U(N) gauge fields in [3], in the context of open string theory (and the zero slope
limit α → 0 [3]). It has then been studied in the case of arbitrary gauge groups
[4–8]. The SW map and the �-product allow us to expand the noncommutative ac-
tion order by order in the deformation parameter and to express it in terms of ordi-
nary commutative fields. Using this approach a deformation of the standard model
was constructed in [9, 10] and some new effects which do not appear in the commu-
tative standard model were calculated in [11, 12].

Finally we end this chapter by comparing the noncommutative gauge theories
obtained by using the twist approach and the Seiberg–Witten approach.

4.2 θ -deformed space

In Chap. 1 see also [13, 14] the noncommutative space ˆAx̂ was introduced as a
quotient

ˆAx̂ =
C[x̂0, . . . , x̂n][[h]]

IR̂
. (4.1)

Here the two-sided ideal IR̂ is given by the linear span of elements

IR̂ : (x̂ . . . x̂)([x̂μ , x̂ν ]− iΘμν(x̂))(x̂ . . . x̂), (4.2)

where (x̂ . . . x̂) stands for an arbitrary product of the coordinates x̂μ in the alge-
bra C[x̂0, . . . , x̂n][[h]]. The algebra C[x̂0, . . . , x̂n][[h]] is freely generated by x̂μ coor-
dinates and formal power series in the parameter h are included. We also have that
Θμν(x̂) ∈ C[x̂0, . . . , x̂n][[h]] and for h = 0 the usual algebra of commuting coordi-
nates is obtained.

The defining relation of the deformed space,

[x̂μ , x̂ν ] = iΘμν(x̂), μ = 0, . . .n, (4.3)

is very general and one usually considers some special examples of it. Among them
there are three very important ones:

Canonically deformed space [x̂μ , x̂ν ] = iθμν , (4.4)
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Lie algebra deformed space [x̂μ , x̂ν ] = iCμν
λ x̂λ , (4.5)

q-deformed space x̂μ x̂ν =
1
q

Rμνρσ x̂ρ x̂σ . (4.6)

In the case of the canonically deformed space (which from now on we call θ -
deformed space) [15], θμν =−θνμ is an antisymmetric constant matrix of mass di-
mension −2. For Lie algebra-deformed spaces [16, 17] Cμν

λ are Lie algebra structure
constants of mass dimension −1. And finally, Rμνρσ is the dimensionless R-matrix of
the quantum space [18, 19]. These three examples are important because they fulfill
the Poincaré-Birkhoff-Witt (PBW) property which was mentioned in Chap. 1. This
property enables us to map an arbitrary element f̂ (x̂) of ˆAx̂ to the space of com-
muting coordinates Ax. First we expand f̂ (x̂) in the basis of ordered monomials (we
work with formal power series). Elements of this basis are labeled by : x̂μ1 . . . x̂μ j :.
In the case of symmetric ordering we have

: x̂μ : = x̂μ ,

: x̂μ x̂ν : =
1
2
(x̂μ x̂ν + x̂ν x̂μ),

. . . ,

: x̂μ1 . . . x̂μ j : =
1
j! ∑σ∈S j

x̂σ(μ1) . . . x̂σ(μ j) . (4.7)

Then each element of the basis is mapped to the corresponding element in the space
of commuting coordinates, for example, : x̂μ : 
→ xμ and : x̂μ x̂ν : 
→ xμxν . For the
element f̂ (x̂) we obtain

f̂ (x̂) = C0 +C1μ : x̂μ : +C2μν : x̂μ x̂ν : + · · ·

f (x) = C0 +C1μxμ +C2μνxμxν + · · · .

�

��
� �
� �
��
� �

(4.8)

Note that f̂ (x̂) in (4.8) is fully characterized by the completely symmetric coeffi-
cients Cμ1...μ j .

However, multiplying two arbitrary elements f̂ , ĝ ∈ ˆAx̂ gives the result which is
no longer written as an expansion in basis and the elements have to be reordered.
For example, we take the symmetric ordering and multiply two basis elements

: x̂μ : · : x̂ν : = x̂μ x̂ν

=
1
2
(x̂μ x̂ν + x̂ν x̂μ)+

1
2
(x̂μ x̂ν − x̂ν x̂μ)

= : x̂μ x̂ν : +
i
2
Θμν(x̂). (4.9)
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In the first line we obtain a result which is not written in terms of basis elements, then
we rewrite it differently. Using relations (4.3) in the last line, the result expressed in
terms of basis elements follows. Once again we mention thatΘμν(x̂) is restricted to
one of the three examples (4.4)–(4.6) that fulfill PBW property.

To extend the vector space isomorphism to an algebra morphism one has to map
the multiplication in the abstract algebra ˆAx̂ to the space of commuting coordinates
Ax. Let f̂ (x̂) and ĝ(x̂) be two elements of ˆAx̂. Their product is an element of ˆAx̂:

f̂ (x̂)ĝ(x̂) = f̂ · ĝ(x̂) ∈ ˆAx̂. (4.10)

After reordering this element can be expanded in the chosen basis and mapped to
the algebra of commuting variables Ax

f̂ · ĝ(x̂) 
→ f �g(x) ∈ Ax. (4.11)

Its image is labeled as f � g(x) and it defines the star product (�-product) of two
functions. This product is bilinear and associative but noncommutative. The algebra
of noncommuting coordinates ˆAx̂ is then isomorphic to the algebra of commuting
variables with the �-product (instead of the usual pointwise multiplication) as mul-
tiplication, which was labeled as A �

x in the previous chapters. As we have seen in
the previous chapters the �-product for the θ -deformed space is given by the Moyal
�-product [20, 21]

f �g(x) = μ
(

e
i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g
)

(4.12)

=
∞

∑
n=0

(
i
2

)n 1
n!
θρ1σ1 . . .θρnσn

(
∂ρ1 . . .∂ρn f (x)

)

(∂σ1 . . .∂σn g(x)) ,

with the pointwise multiplication μ

μ( f ⊗g) = f ·g. (4.13)

Once again we remind the reader that the deformation parameter h is absorbed in
θρσ .

Derivatives

Derivatives can be introduced as maps of the noncommutative space ˆAx̂ to itself.1

They are a deformation of the usual derivatives and one can make the following
ansatz:

1 The approach followed in this and in the next chapter is different than the one followed in (1.29).
Nevertheless, in the case of θ -deformed space both approaches give the same result. For more
complicated deformations of the commutative spacetime this will no longer be the case, see the
next chapter.
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[∂̂ρ , x̂μ ] = δ μρ + f μρ (∂̂ ,θ). (4.14)

Here f μρ (∂̂ ,θ) is an operator on the algebra ˆAx̂. We suppose that it is a function

only of the operators ∂̂ρ and the deformation parameter θμν and not a function of
coordinates x̂μ . Furthermore,

[∂̂ρ , ∂̂σ ] = 0, (4.15)

that is, derivatives commute among themselves.
Since the derivatives ∂̂ρ are maps of the θ -deformed space into itself the relation

(4.14) has to be consistent with (4.4)

∂̂ρ ([x̂μ , x̂ν ] − i θμν) =

([x̂μ , x̂ν ] − iθμν) ∂̂ρ = 0. (4.16)

That is, commuting derivative through coordinates does not lead to new commuta-
tion relations between coordinates. We calculate

∂̂ρ x̂μ x̂ν = ([∂̂ρ , x̂μ ]+ x̂μ ∂̂ρ)x̂ν

= (δ μρ + f μρ (∂̂ ,θ))x̂ν + x̂μ([∂̂ρ , x̂ν ]+ x̂ν ∂̂ρ)

= (δ μρ + f μρ (∂̂ ,θ))x̂ν + x̂μ(δνρ + f νρ (∂̂ ,θ)+ x̂ν ∂̂ρ),

∂̂ρ x̂ν x̂μ = . . .

= (δνρ + f νρ (∂̂ ,θ))x̂μ + x̂ν(δ μρ + f μρ (∂̂ ,θ)+ x̂μ ∂̂ρ),

and
∂̂ρθ μν = θμν ∂̂ρ .

Adding these three terms together we see that

∂̂ρ ([x̂μ , x̂ν ]− iθμν) = ([x̂μ , x̂ν ]− iθμν) ∂̂ρ = 0 (4.17)

is fulfilled for f μρ (∂̂ ,θ) = 0. Therefore,

[∂̂ρ , x̂μ ] = δ μρ . (4.18)

There are no additional terms in (4.18). This is due to the fact that the right-hand side
of (4.4) is constant. In the next chapter we study the κ-deformed space which is an
example for a Lie algebra deformation. There it is not possible to set f μρ (∂̂ ,κ) = 0
and additional terms arise.

In order to represent the derivative ∂̂ρ on A �
x we use the following scheme:

f̂ (x̂) f (x)

(∂̂μ f̂ )(x̂) (∂ �
μ f )(x) .

� ��

�

��

∂̂μ

�

��

∂ �
μ

� ��

(4.19)
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First, the elements f̂ (x̂) and (∂̂μ f̂ )(x̂) are mapped to A �
x by using the PBW prop-

erty. Then comparing the images f (x) and (∂ �
μ f )(x) the form of the operator ∂ �

μ is

deduced. In the case of θ -deformed space the representation of ∂̂ρ on A �
x is given

by the usual partial derivative

∂̂ρ 
→ ∂ �
ρ = ∂ρ . (4.20)

This derivative has the undeformed Leibniz rule
(
∂ �
ρ ( f �g)

)
= ∂ρ( f �g) =

(
∂ �
ρ f
)

�g+ f �
(
∂ �
ρg
)

=
(
∂ρ f
)
�g+ f �

(
∂ρg
)
. (4.21)

Integral

To be able to write down actions we have to introduce an integral on this space.
One can check that the usual integral on the commutative space is cyclic,2 that is, it
fulfills ∫

d4x f �g =
∫

d4x g� f =
∫

d4x f ·g. (4.22)

Note that from now on we work in four dimensions. However, all the results in this
chapter can be generalized to higher dimensions as well. From (4.22) it follows

∫
d4x ( f1 � f2 � . . . � fk) =

∫
d4x ( fk � f1 � . . . � fk−1), (4.23)

that is, cyclic permutations under the integral are allowed. This is important if we
want to define the variational principle which is used to derive equations of motion,
see Chap. 1. We use the usual Leibniz rule for the functional variation and then use
cyclicity (4.23) to omit one � and extract the result. For example,

δ
δg(y)

∫
d4x f �g�h =

∫
d4x f �

(
δ

δg(y)
g

)
�h

=
∫

d4x f �δ (4)(y− x)�h

=
∫

d4x δ (4)(y− x)� (h� f )

=
∫

d4x δ (4)(y− x)(h� f ) = h� f (y). (4.24)

Here δ (4)(y− x) is the usual four-dimensional commutative Dirac delta function.

2 Note that (4.22) is fulfilled if suitable boundary conditions at infinity are chosen.



4 Deformed Gauge Theory: Twist Versus Seiberg–Witten Approach 59

4.3 Twisted gauge theory

A non-abelian gauge group is generated by the hermitian generators T a that fulfill

[T a,T b] = i f abcT c, a = 1, . . . ,n, (4.25)

where f abc are structure constants of the group and a sum over repeated indices is
understood. From the Jacobi identities

[T a, [T b,T c]]+ [T b, [T c,T a]]+ [T c, [T a,T b]] = 0, (4.26)

it follows that
f abc f dce + f ace f bdc + f dac f bce = 0. (4.27)

The matter field ψ(x) is in a certain irreducible representation (fundamental for
example) of this group. Under the undeformed gauge transformations it transforms
as follows:

ψ(x) → ψ ′(x) = eiαa(x)T a
ψ(x) ≡Uα(x)ψ(x), (4.28)

or infinitesimally

δαψ(x) = iαa(x)T aψ(x) ≡ iα(x)ψ(x). (4.29)

Note that the parameter of the above transformations is x-dependent, that is, trans-
formations are local. Transformations (4.29) close in the algebra

δαδβ −δβδα = δ−i[α,β ]. (4.30)

The Leibniz rule is given by

δα(φ ·ψ) = (δαφ) ·ψ+φ · (δαψ)

= iαa ·
(
(T a
φ φ) ·ψ+φ · (T a

ψψ)
)

, (4.31)

where the generators T a
φ and T a

ψ are generators of the Lie algebra in the appropriate
representation.

4.3.1 Gauge transformations

The deformed (twisted) gauge transformations [1, 2] were defined in Chap. 2 as
follows:

δ �
αψ = iX�

α �ψ = iX�
αa �T aψ = iα ·ψ, (4.32)

where the operator X� was introduced in Chap. 1 and is given by
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X�
αa =

∞

∑
n=0

(
− i

2

)n 1
n!
θρ1σ1 . . .θρnσn

(
∂ρ1 . . .∂ρnα

a(x)
)
�∂σ1 . . .∂σn . (4.33)

The operators X� fulfill X�
f � X�

g = X�
f ·g as it was shown in Chap. 1. Therefore, we

conclude that this transformations close in the algebra (4.30)

[δ �
α ,δ �

β ]ψ = −iδ �
[α,β ]ψ. (4.34)

Now we have to learn how to transform products of fields. We start with defining
the transformation law of �-product of two fields as in the commutative case

δ �
α(φ �ψ) = iX�

αa �{T a
φ φ �ψ+φ �T a

ψψ}
= iαa · {T a

φ φ �ψ+φ �T a
ψψ}. (4.35)

In the last line the definition of X�
α given in (4.33) was used.

If we now take the usual Leibniz rule (4.31) and just insert �-products everywhere
we obtain

δ �
α(φ �ψ) = (δ �

αφ)�ψ+φ � (δ �
αψ)

= i(αaT a
φ φ)�ψ+ iφ � (αaT a

ψψ). (4.36)

Clearly, the right-hand sides of (4.35) and (4.36) are not equal because the �-product
(4.12) is not commutative. Therefore, we formulate our deformed Leibniz rule in the
following way:

δ �
α(φ �ψ) = (δ �

αφ)�ψ+φ � (δ �
αψ)+ additional terms. (4.37)

These additional terms are found by comparing the right-hand sides of the demanded
transformation law (4.35) and (4.37). Expanding the �-products up to first order in
the deformation parameter θ and arranging terms leads to

additional terms =
1
2
θρσαa

(
(T a
φ ∂ρφ) · (∂σψ)+∂ρφ · (T a

ψ∂σψ)
)

+O(θ 2)

= − i
2
θρσ

(
(δ �
∂ραφ)� (∂σψ)+(∂ρφ)� (δ �

∂σαψ)
)

+O(θ 2),

which gives the following Leibniz rule:

δ �
α(φ �ψ) = (δ �

αφ)�ψ+φ � (δ �
αψ) (4.38)

− i
2
θρσ

(
(δ �
∂ραφ)� (∂σψ)+(∂ρφ)� (δ �

∂σαψ)
)

+O(θ 2).

One can continue like this to second and higher orders, see Chap. 1 for details. The
full result for the deformed Leibniz rule is finally
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δ �
α(φ �ψ) = (δ �

αφ)�ψ+φ � (δ �
αψ)+

∞

∑
n=1

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn (4.39)

(
(δ∂ρ1 ...∂ρnαφ)� (∂σ1 . . .∂σnψ)+(∂ρ1 . . .∂ρnφ)� (δ∂σ1 ...∂σnαψ)

)
.

Using the Hopf algebra language, this deformed Leibniz rule comes from the
deformed coproduct of δ �

α transformations. The deformed coproduct is obtained by
applying the twist operator on the undeformed Hopf algebra of gauge transforma-
tions δα . In that way the algebra itself remains unchanged, but the comultiplication
(which leads to the Leibniz rule) changes. The Hopf algebra techniques are dis-
cussed in Chap. 2 and will also be subjects of Chaps. 7 and 8 so we do not go into
details here.

4.3.2 Field strength tensor

Having found the Leibniz rule for δ �
α transformations, we proceed like in the com-

mutative case. First, covariant derivative is introduced as

D�
μψ = ∂μψ− iAμ �ψ,

δ �
α(D�

μψ) = iX�
αa �T a(D�

μψ) = iα(D�
μψ), (4.40)

where Aμ is the noncommutative gauge field. Using (4.39) when explicitly calculat-
ing (4.40) gives

δ �
αAμ = ∂μα+ iX�

αa � [T a,Aμ ]
= ∂μα+ i[α,Aμ ]. (4.41)

From this transformation law it follows that Aμ can be taken to be Lie algebra val-
ued, Aμ = Aa

μT a.
However, introducing the field strength tensor Fμν as

Fμν �ψ = i[D�
μ

�, D�
ν ]ψ (4.42)

gives

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ],
δ �
αFμν = iX�

αa � [T a,Fμν ] = i[α,Fμν ]. (4.43)

If we assume that Aμ = Aa
μT a, that is, Aμ is Lie algebra valued, for Fμν we obtain

Fμν = Fa
1μνT a +Fab

2μν
1
2
{T a,T b} = F1μν +F2μν ,

Fa
1μν = ∂μAa

ν −∂νAa
μ +

1
2

f abc{Ab
μ

�, Ac
ν},

Fab
2μν = −i[Aa

μ
�, Ab

ν ], (4.44)
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where {T a,T b} = T aT b +T bT a and {Ab
μ

�, Ac
ν} = Ab

μ �Ac
ν +Ac

ν �Ab
μ . The anticom-

mutator of generators {T a,T b} is not Lie algebra valued in general. In the special
case of U(N) gauge group one can express the anticommutator {T a,T b} in the gen-
erators T a only (no products of generators) [3]. In the case of SU(N) groups this is
not possible. Still, we are interested in SU(N) gauge theories because of their im-
portance for the formulation of the standard model. Therefore, Fμν (4.44) will not
be Lie algebra valued because of the term F2μν = Fab

2μν
1
2{T a,T b}. The good news

is that both F1μν and F2μν transform covariantly

δ �
αF1μν = iX�

αa � [T a,F1μν ] = i[α,F1μν ],
δ �
αF2μν = iX�

αa � [T a,F2μν ] = i[α,F2μν ]. (4.45)

If we want to stay in the Lie algebra we could take just Fa
1μν part of the full Fμν

and formulate the action with it only. Note that Fa
μν also has the good classical limit,

when θ → 0 it reduces to the commutative Fμν . One can also include matter fields
and formulate “gauge + matter” action, derive equations of motion, analyze their
solutions, and so on. Unfortunately, some problems arise in this procedure. To see
clearly what is causing them we now analyze only the gauge part of the action.

4.3.3 Equations of motion

Let us write the action for the gauge field as

Sgauge = −1
4

∫
d4x Fa

1μν �Fμν a
1 , (4.46)

that is, taking only the Lie algebra-valued part of the full Fμν . Using the variational
principle (4.24) gives

δSgauge

δAa
ρ

= ∂μFμρ a
1 +

1
2

f abc{Ab
μ

�, Fμρ c
1 } = 0. (4.47)

From the antisymmetry of Fa
μν it follows that ∂ρ∂μFμρ a

= 0 and this leads to

∂ρ
(

1
2

f abc{Ab
μ

�, Fμρ c
1 }

)
= ∂ρJρ a = 0, (4.48)

where the conserved current is defined as Jρ a = 1
2 f abc{Ab

μ
�, Fμρ c

1 }. However, when
we check its conservation explicitly using the equations of motion (4.47) we obtain

∂ρJρ a = . . .

=
1
4

(
f abc f bdhAh

μ �Fμρ c
1 �Ad

ρ (4.49)

+ f abd f bhcFμρ c
1 �Ad

ρ �Ah
μ + f abh f bcdAd

ρ �Ah
μ �Fμρ c

1

)
�= 0.
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The final result was obtained by using the Jacobi identity (4.27). This tells us that
Jρ a is not conserved on the equations of motion, that is, equations (4.47) are not
consistent. This signalizes that we are doing something wrong. It comes out that the
problem arose when we took only the Lie algebra-valued part of Fμν and not the
full Fμν .

Let us now take the full Fμν (4.43) and assume that Aμ and Fμν are n×n matrix
valued where n is the dimension of the Lie algebra representation. We obtain

Sgauge = −1
4

∫
d4x Tr(Fμν �Fμν)

= −1
4

∫
d4x (Fμν)AB � (Fμν)BA, (4.50)

where in the last line matrix indices A and B are written explicitly. The equations of
motion are given by

δSgauge

δ (Aρ)AB

=
(
∂μFμρ)

AB
− i
(
[Aμ �, Fμρ ]

)
AB

= 0. (4.51)

Again, using the antisymmetry of Fμν , we obtain

∂ρ
(
i[Aμ �, Fμρ ]

)
= ∂ρJρ = 0. (4.52)

This time the conserved current is defined as Jρ = i[Aμ �, Fμρ ], compare with
Chap. 2, Sect. 2.4. The result (4.52) can be checked explicitly by using the equations
of motion (4.51) and the Jacobi identity. After differentiation,

∂ρ [Aμ �, Fμρ ] = [∂ρAμ �, Fμρ ]+ [Aμ �, ∂ρFμρ ], (4.53)

we antisymmetrize ∂ρAμ because Fμρ is antisymmetric in μ and ρ . Then we use

1
2
(∂ρAμ −∂μAρ) =

i
2

Fρμ +
i
2
[Aρ �, Aμ ] (4.54)

and insert it into (4.53). The commutator [Fμρ �, Fμρ ] vanishes and only i
2 [[Aρ �, Aμ ] �,

Fμρ ] remains from the first term in (4.53). For the second term in (4.53) we use the
equations of motion (4.51). Finally, all terms that are left add up to zero if we use
the Jacobi identity, so Jρ is conserved on the equations of motion.

To conclude, the consistency of equations of motion forces us to take Fμν in the
form (4.43), that is non-Lie algebra valued. Then there is no reason to assume that
Aμ itself is Lie algebra valued. The consistent equations of motion follow if Aμ and
Fμν are taken to be n× n matrix valued in the n-dimensional representation of the
Lie algebra. But we can also take the gauge field Aμ to be enveloping algebra valued

Aμ = Aa
μT a +Aab

μ
1
2
{T a,T b}+ · · · . (4.55)
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Then the field strength tensor Fμν (4.43) is also enveloping algebra valued and from
the equations of motion (4.51) it follows that Aμ and Fμν will remain enveloping
algebra valued.

Looking at (4.55) we see that in this way we are introducing extra degrees of
freedom via fields Aab

μ , . . . . In general, there will be infinitely many new fields,
these need a physical interpretation. A possible solution might be to generate large
masses for these fields via some form of Higgs mechanism. In this way they become
unobservable for today’s experiments. Nevertheless this still remains an open ques-
tion and needs to be analyzed in future. Let us mention that the special example of
SU(2) gauge transformations in the two-dimensional representation was discussed
in [1, 2]. There it was shown that in order to have consistent equations of motion one
has to enlarge SU(2) by adding only one new abelian field, that is, to replace SU(2)
by U(2). This will be also true for other SU(N) gauge groups in the N-dimensional
representation. It is enough to enlarge the gauge group from SU(N) to U(N) since
for U(N) in the N-dimensional representation the �-commutator [ �, ] closes in the
algebra.

Another important result is (4.52). Almost for free we got a conserved current
for the deformed symmetry. Note that in the case of deformed symmetry one cannot
apply the usual Noether’s theorem to derive conserved quantities. Some work in
this context is done in [22–24], but this problem still remains a subject of further
research.

4.4 Seiberg–Witten gauge theory

In this section we describe a different approach to gauge theories on deformed
spaces. The infinitesimal noncommutative gauge transformations are now defined
as [3–5]

δ sw
Λ ψ(x) = iΛ �ψ(x), (4.56)

where Λ is the noncommutative gauge parameter and ψ is the noncommutative
matter field. Note that Λ =Λ(x) is a function and not a differential operator like in
(4.32). Before proceeding to the standard construction of a covariant derivative one
should check if these transformations close in the algebra (4.30). If the noncommu-
tative gauge parameter Λ is supposed to be Lie algebra valued Λ(x) =Λ a(x)T a an
explicit calculation gives

(δ sw
Λ1
δ sw
Λ2

− δ sw
Λ2
δ sw
Λ1

)ψ = (Λ1 �Λ2 −Λ2 �Λ1)�ψ

=
1
2

(
[Λ a

1
�, Λ b

2 ]{T a,T b}+{Λ a
1

�, Λ b
2 }[T a,T b]

)
�ψ. (4.57)

Note that now δ sw
Λ has the undeformed Leibniz rule

δ sw
Λ (φ �ψ) = (δ sw

Λ φ)�ψ+φ � (δ sw
Λ ψ).
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The left-hand side of (4.57) in general does not close in the Lie algebra because
of the first term in the last line. Namely, an anticommutator of two generators is in
general no longer in the Lie algebra of generators. There are two ways of solving
this problem. One is to consider only U(N) gauge theories (and with some difficulty
SO(N) and Sp(N) gauge theories [7, 8]) since then the anticommutator of genera-
tors is still in the Lie algebra of generators. This is the approach taken in [3] where
the Seiberg–Witten map was constructed for the first time. It enables the study of
non-expanded (in orders of the deformation parameter) noncommutative field theo-
ries. Actions describing these field theories look the same as the actions describing
corresponding undeformed theories, except that instead of the usual pointwise mul-
tiplication, the Moyal �-product (4.12) is used to multiply fields. Quantization of
the non-expanded theories leads to the mixing of ultraviolet (UV) and infrared (IR)
divergences which is known in the literature as UV/IR mixing [25, 26]. However,
there are other approaches which give different results. For example, a more careful
treatment of the time ordering and the perturbation theory results in an UV finite
S-matrix and no UV/IR mixing occurs, see [27, 28] and references therein. Yet an-
other approach is used in [29, 30]. There an additional term is added to the action
for φ 4 scalar field theory on the θ -deformed space. The new term is nonlocal and
it explicitly breaks the translational invariance; however, it renders the new action
renormalizable to all orders.

The non-expanded NC field theories we will not consider here. Still, it is inter-
esting to make a few more remarks before we proceed further.

In [31] a noncommutative quantum electrodynamics was discussed by using a
non-expanded approach. The same action as the action (4.50) in the case of U(1)
gauge theory was introduced and some quantum properties, explicitly UV/IR mix-
ing, were discussed. Note that these actions although they look the same are invari-
ant under different symmetry. The action (4.50) is invariant under twisted gauge
transformations, while the action discussed in [31] is invariant under (4.56) trans-
formations. Also note that Aμ in the approach of [31] is just the commutative
U(1) gauge field. Some non-perturbative solutions of equations of motion for non-
expanded noncommutative gauge theories were studied in [32–34]. The equations
of motion have the same form as (4.51) but are covariant with respect to (4.56) trans-
formations, while (4.51) are covariant with respect to twisted gauge transformations
so the interpretation is different.

The approach we will follow here is the enveloping algebra approach [4, 5].
Namely, the enveloping algebra is big enough and the transformations (4.56) will
close in it.

4.4.1 Enveloping algebra approach

To start with, we define the basis in the enveloping algebra (we choose symmetric
ordering)
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: T a : = T a,

: T aT b : =
1
2
(T aT b +T bT a),

. . . ,

: T a1 . . .T al : =
1
l! ∑σ∈Sl

(Tσ(a1) . . .Tσ(al)).

The gauge parameter Λ is enveloping algebra valued

Λ(x) =
∞

∑
l=0
∑
basis

Λ l a1...al (x) : T a1 . . .T al :

= Λ 0 a(x) : T a : +Λ 1 a1a2(x) : T a1T a2 : + · · · . (4.58)

In this case (4.57) closes since we work in the enveloping algebra. Now one defines
a covariant derivative

D�
μψ(x) = ∂μψ(x)− iVμ �ψ(x), (4.59)

where Vμ is a noncommutative gauge field. The transformation law of the covariant
derivative is given by

δ sw
Λ (D�

μψ(x)) = iΛ �D�
μψ(x). (4.60)

Then the transformation law for the noncommutative gauge field follows from (4.60)

δ sw
Λ Vμ = ∂μΛ + i[Λ �, Vμ ]. (4.61)

From here it is obvious that the gauge field Vμ has to be enveloping algebra as well

Vμ =
∞

∑
l=0
∑
basis

V l a1...al
μ : T a1 . . .T al : .

It looks as if we obtained a theory with infinitely many degrees of freedom. For-
tunately there is a solution to this problem and it is given in terms of the Seiberg–
Witten (SW) map [3] .

4.4.2 Seiberg–Witten map

The basic idea behind this map is to suppose that all higher order degrees of freedom
depend only on the degrees of freedom present at zeroth order, the Lie algebra-
valued gauge parameter Λ 0 aT a and the Lie algebra-valued gauge field V 0 a

μ T a. If
such a reduction of degrees of freedom is possible, it means that the gauge theory on
a NC space can be related to and is determined entirely by the gauge field theory on
commutative space. Especially, the number of degrees of freedom of the NC gauge
theory and the gauge theory on commutative space would be equal in this case.
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Studying the cohomology of the enveloping algebra-valued gauge theory one can
show that this reduction is indeed possible [6]. Here we perform explicit calculations
up to first order in the deformation parameter θ and do not go into details concerning
the existence of such a construction to all orders in θ .

Let us suppose that the noncommutative gauge parameterΛ depends on the com-
mutative gauge parameter α = αaT a and the commutative gauge field Aμ = Aa

μT a

and their derivatives, that is,

Λ ≡Λα =Λα(x;α,Aμ). (4.62)

Then the gauge transformation δ sw
Λ can be related to the commutative gauge trans-

formation δα of the expanded Λα (4.58). Therefore, we have

δ sw
Λ = δ sw

Λα ≡ δ sw
α , (4.63)

where the last definition is introduced in order to avoid the double index notation.
One should notice that δαΛβ �= 0 because Λβ depends on the commutative gauge
field Aμ as well and

δαAμ = ∂μα− i[Aμ ,α]. (4.64)

Inserting Λα =Λα(x;α,Aμ) into (4.57) gives

i(δ sw
α Λβ −δ sw

β Λα)�ψ+(Λα �Λβ −Λβ �Λα)�ψ = iΛ−i[α,β ] �ψ. (4.65)

Since this has to be valid for any matter field ψ , we obtain

Λα �Λβ −Λβ �Λα + i(δ sw
α Λβ −δ sw

β Λα) = δ sw
−i[α,β ]. (4.66)

Equation (4.66) can be solved perturbatively. Therefore, one has to expand the
�-product and also expand Λα in orders of the deformation parameter3 θ as

Λα =Λ 0
α +Λ 1

α + · · ·+Λ k
α + · · · . (4.67)

Here Λ 0
α is of the zeroth order in θ , Λ 1

α is of the first order in θ , and so on. In the
zeroth order the noncommutative gauge parameter is just the gauge parameter of the
undeformed (commutative) gauge theory, Λ 0

α = α = αaT a. Then Λ 1
α is the solution

of the inhomogeneous equation

δ sw
α Λ 1

β −δ sw
β Λ 1

α − i[α,Λ 1
β ]− i[Λ 1

α ,β ]−Λ 1
−i[α,β ]

= −1
2
θμν{∂μα,∂νβ}. (4.68)

The solution, up to first order in θ , is given by

Λα = α− 1
4
θμν{Aμ ,∂να}. (4.69)

3 Note that this expansion is different than the one in (4.58). This difference is clearly visible in the
solutions for the second and higher orders of the expansion (4.67), see [35] for details and Sect.
5.5 for an explicit example.
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Note that this solution is not unique, one can always add solutions of the homoge-
neous equation

δ sw
α Λ 1

β −δ sw
β Λ 1

α − i[α,Λ 1
β ]− i[Λ 1

α ,β ]−Λ 1
−i[α,β ] = 0 (4.70)

to it, see for example [4, 5]. One can add cΛ 1hom
α to the solution (4.69), but since the

nonuniqueness of Seiberg–Witten map is not our main topic here, we choose c = 0.
The same (omitting the solutions of the homogeneous equations) we do in the rest
of this chapter. Detailed analysis of nonuniqueness of Seiberg–Witten map can be
found in [35].

Now one can solve the SW map for the matter field ψ using (4.56) and (4.69).
Matter field is also expanded in orders of the deformation parameter θ as ψ =ψ0 +
ψ1 + · · · and ψ0 is the matter field in the undeformed gauge theory with δαψ0 =
iαψ0. Inserting this into (4.56) leads to equations for ψ1 and higher order terms
which can be solved. The equation for ψ1 reads

δαψ1 = iαψ1 + iΛ 1
αψ0 − 1

2
θρσ (∂ρα)(∂σψ0). (4.71)

Using the solution for the noncommutative gauge parameter (4.69) we find (up to
first order in θ again)

ψ = ψ0 − 1
2
θμνAμ(∂νψ0)+

i
8
θμν [Aμ ,Aν ]ψ0. (4.72)

In the same way the gauge field Vμ is expanded in orders of the deformation
parameter θ as

Vμ =
∞

∑
l=0
∑
basis

V l a1...al
μ : T a1 . . .T al : .

= V 0a
μ T a +V 1ab

μ : T aT b : + · · · . (4.73)

Inserting these expansions into the transformation law (4.61) the following equa-
tions are obtained

θ 0 : δαV 0
μ = ∂μα+ i[α,V 0

μ ], (4.74)

θ 1 : δαV 1
μ = ∂μΛ 1 + i[α,V 1

μ ]+ i[Λ 1,V 0
μ ]

+i[α �,1 V 0
μ ]. (4.75)

The commutator [α �,1 V 0
μ ] = iθρσ (∂ρα)(∂σV 0

μ ) stands for the first order in θ of
the full �-commutator [α �, V 0

μ ]. The zeroth-order equation is consistent with the
assumption that V 0

μ is the commutative gauge field V 0
μ = Aμ = Aa

μT a. Using the
solution for Λα (4.69), the first-order solution of (4.75) is given by

V 1
μ =

1
4
θρσ

(
{Fρμ ,Aσ}−{Aρ ,∂σAμ}

)
. (4.76)
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That this is really a solution of (4.75) one can check explicitly by using the transfor-
mation law (4.64). Finally, the solution for the noncommutative gauge field Vμ up
to first order in θ reads

Vρ = Aρ +
1
4
θμν

(
{Fμρ ,Aν}−{Aμ ,∂νAρ}

)
. (4.77)

The field strength tensor F�
μν is calculated from

F�
μν = i[D�

μ
�, D�

ν ]
= ∂μVν −∂νVμ − i[Vμ �, Vν ]

= Fμν +
1
4
θρσ

(
2{Fρμ ,Fσν}+{DρFμν ,Aσ}−{Aρ ,∂σFμν}

)
. (4.78)

In solutions (4.76), (4.77), and (4.78) Fμν = ∂μAν − ∂νAμ − i[Aμ ,Aν ] is the com-
mutative field strength tensor and its covariant derivative is given by DρFμν =
∂ρFμν − i[Aρ ,Fμν ].

With the solutions of the SW map (4.69), (4.72), (4.77), and (4.78) we have
enough information to write down the action for the Seiberg–Witten gauge theory.
As an example, the action for spinor matter field is given by

S =
∫

d4x ψ̄ � (iγμD�
μψ−mψ)− 1

4

∫
d4x Tr

(
F� μν �F�

μν
)
. (4.79)

This action can be expanded in orders of the deformation parameter and analyzed
perturbatively. One sees that no new fields appear (unlike in the “twisted” approach),
but only new interactions and the deformation parameter enters as a coupling con-
stant. Using this approach a formulation of a NC standard model has been done
in [9, 10]. Then, since new interactions appear, some of the processes that are for-
bidden in the commutative standard model become allowed and can be analyzed
[11, 12]. Also, renormalization of these theories has been discussed, see [36–39]
and references therein.

Finally, let us remark that in the noncommutative case (where partial deriva-
tives are frequently given by the commutator with coordinates) besides covariant
derivatives one has the concept of covariant coordinates [40]. Using the Kontsevich
formality maps [41] in order to construct covariant coordinates, the SW map to all
orders for an arbitrary Poisson manifold was constructed for the NC gauge theories
in [42, 43].

4.5 Comments

We presented two ways of introducing gauge theories on deformed spaces. Seiberg–
Witten approach enables us to analyze some properties of gauge theories on NC
spaces in a perturbative way, starting from the commutative gauge theory in the ze-
roth order. Unlike the “twisted” approach, it does not lead to new fields, but only
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to new interactions. On the other hand, in the “twisted” approach we know how to
formulate deformed gauge symmetry in a well-defined mathematical language, that
is, in terms of Hopf algebras. This tells us that we have really changed the commu-
tative gauge symmetry in a well-defined way. To summarize we write explicitly the
Hopf algebras of both “twisted” and Seiberg–Witten gauge transformations:

Twisted gauge transformations

δ �
αδ �

β − δ �
β δ

�
α = δ �

−i[α,β ], δ �
αψ = iαψ, (4.80)

Δδ �
α = e−

i
2 θ

ρσ ∂ρ⊗∂σ (δ �
α ⊗1+1⊗δ �

α)e
i
2 θ

ρσ ∂ρ⊗∂σ (4.81)

= δ �
α ⊗1+1⊗δ �

α −
i
2
θρσ (δ �

(∂ �
ρα) ⊗∂σ +∂ρ ⊗δ �

(∂σα))+ · · · ,

ε(δ �
α) = 0, S(δ �

α) = −δ �
α . (4.82)

Seiberg–Witten gauge transformations

δ sw
α δ sw

β − δ sw
β δ sw

α = δ sw
−i[α,β ], δ sw

α ψ = iΛα �ψ, (4.83)

Δδ sw
α = δ sw

α ⊗1+1⊗δ sw
α , (4.84)

ε(δ sw
α ) = 0, S(δ sw

α ) = −δ sw
α . (4.85)

We see that in the case of Seiberg–Witten gauge transformations, the Hopf al-
gebra is the same as in the case of undeformed gauge transformations, but the way
fields transform is different. In the case of “twisted” gauge transformations the de-
formation is present in the coalgebra sector, namely in the deformed coproduct. This
deformation then allows the introduction of a tensor calculus and the construction of
gauge-invariant actions. An attempt to relate these two approaches is done in [44],
but the connection between them still remains to be fully understood. The question
which of them (if any) is more applicable to our real world also remains open and a
subject of further research.
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19. A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin

(1997). 55
20. H. Weyl, Quantenmechenik und Gruppentheorie, Z. Phys. 46, 1 (1927). 56
21. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45, 99

(1949). 56
22. S. Giller, C. Gonera, P. Kosinski and P. Maslanka, On the consistency of twisted gauge theory,

Phys. Lett. B 655, 80–83 (2007), [hep-th/0701014]. 64
23. C. Gonera, P. Kosinski, P. Maslanka and S. Giller, Space-time symmetry of noncommutative

field theory, Phys. Lett. B 622, 192 (2005), [hep-th/0504132]. 64
24. P. Aschieri, L. Castellani and M. Dimitrijević, Dynamical noncommutativity and Noether
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31. L. Álvarez-Gaumé and M. A. Vázquez-Mozo, General properties of noncommutative field

theories, Nucl. Phys. B668, 293 (2003), [hep-th/0305093]. 65



72 Marija Dimitrijević

32. N. Nekrasov and A. S. Schwarz, Instantons on noncommutative R4, and (2,0) superconformal
six dimensional theory, Comm. Math. Phys. 198, 689 (1998), [hep-th/9802068]. 65

33. D. Gross and N. Nekrasov, Monopoles and strings in noncommutative gauge theory, JHEP
0007, 034 (2000), [hep-th/0005204]. 65

34. N. Nekrasov, Trieste lectures on solitons in noncommutative gauge theories, hep-th/0011095. 65
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Chapter 5
Another Example of Noncommutative Spaces:
κ-Deformed Space

Marija Dimitrijević

In this chapter we discuss another type of noncommutative space, the κ-deformed
space. It is an example of Lie algebra type of deformation of the usual commutative
space. In the first part derivatives and the symmetry of this space are discussed.
We start with the abstract algebra of operators and using the �-product approach
represent everything on the space of commuting coordinates. In the second part we
describe how to construct noncommutative gauge theory on this space using the
Seiberg–Witten approach.

5.1 Introduction

Gauge and gravity theories on noncommutative spaces were subject of previous
chapters. Although only the θ -deformed (canonically deformed) space was dis-
cussed, the analysis was general enough so that it could be applied to other types of
noncommutative spaces. In this chapter we want to consider a Lie algebra type of
deformation, the κ-Minkowski space. We follow the outlined approach when repre-
senting the algebra of noncommuting coordinates and operators acting on it on the
space of commuting coordinates. However, note that the deformed Poincaré algebra
which we consider here does not follow from a twist. More details about twists and
Hopf algebras will be given in the second part of the book, see Chaps. 7 and 8.

Historically, the κ-Minkowski space was first obtained in [1, 2] contracting the
q-anti-de Sitter Hopf algebra SOq(3,2). The κ-Poincaré algebra was introduced in
[3] as a dual symmetry structure to the κ-Poincaré group. Then the κ-Minkowski
space is introduced as a module of this algebra. One of the reasons why the κ-
Minkowski space has been studied in last years is that there is a quantum group
symmetry acting on it. It has been believed until recently that a quantum group sym-
metry for the θ -deformed space does not exist (it was shown in [4–6] that that is not
the case, however; see also Chap. 7, Sect. 7.7). Therefore, the κ-Minkowski space
has been considered to be one of the simplest examples of possible deformations of

Dimitrijević, M.: Another Example of Noncommutative Spaces: κ-Deformed Space. Lect. Notes Phys. 774, 73–85
(2009)
DOI 10.1007/978-3-540-89793-4 5 c© Springer-Verlag Berlin Heidelberg 2009



74 Marija Dimitrijević

the usual Minkowski space with a deformed symmetry (quantum group symmetry)
acting on it. It is the so-called κ-Poincaré group. This space plays also an important
role in the Doubly Special Relativity (DSR) theories [7–9]. These theories are intro-
duced as a possible generalization of the Special Relativity. They are characterized
by two invariants, the speed of light in vacuum c and the minimal length, Planck
length lP. For reviews on DSR see [10, 11].

We start from an abstract algebra of noncommuting coordinates. Then deriva-
tives and Lorentz generators are introduced as operators which map this algebra to
itself. By using the �-product approach the abstract noncommutative space and the
operators acting on it are mapped to the space of commuting coordinates. Finally,
non-abelian gauge theories are formulated following the Seiberg–Witten approach
as introduced in the previous chapter.

5.2 κ-deformed space

The κ-deformed space is a special example of the Lie algebra type of deformation.
It is the abstract algebra ˆAx̂ generated by coordinates x̂μ which fulfill

[x̂μ , x̂ν ] = iCμν
ρ x̂ρ , (5.1)

where
Cμν
ρ = a(δ μn δνρ −δνn δ

μ
ρ ), μ = 0, . . . ,n. (5.2)

The constant deformation vector aμ of length a points in the n-th space-like di-
rection, an = a. The parameter a is related to the frequently used parameter κ as
a = 1/κ . Written more explicitly (5.1) reads

[x̂n, x̂l ] = iax̂l , [x̂k, x̂l ] = 0; k, l = 0,1, . . . ,n−1. (5.3)

Latin indices denote the undeformed dimensions, n denotes the deformed dimension
(deformed in the sense that x̂n does not commute with the other coordinates), and
Greek indices refer to all n + 1 dimensions. Note that in the κ-Minkowski space
of [1, 2, 12] time direction is noncommutative, while here we choose one space
direction to be noncommutative.

As in the previous chapter derivatives are introduced as maps on the deformed
coordinate space [13, 14]

∂̂ : ˆAx̂ → ˆAx̂ .

Such a map in particular has to map the ideal generated by the commutation relations
of coordinates (5.2) into itself, that is,

∂̂ρ
(
[x̂μ , x̂ν ]− iCμν

λ x̂λ
)

=
(
[x̂μ , x̂ν ]− iCμν

λ x̂λ
)
∂̂ρ = 0. (5.4)
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If this is the case we say that the map ∂̂ respects the commutation relations (5.2) or
is consistent with them.

To find a suitable map we use the same technique as in the previous chapter. We
make a general ansatz for the commutator of a derivative with a coordinate:

[∂̂μ , x̂ν ] = δνμ +∑
j

A
νρ1...ρ j
μ ∂̂ρ1 . . . ∂̂ρ j . (5.5)

We mention again that [∂̂μ , ∂̂ν ] = 0 in our approach. The coefficient functions

A
νρ1...ρ j
μ are constant and vanish in the commutative limit, a → 0. Requiring con-

sistency of (5.5) with the commutation relations of the deformed space, that is, cal-
culating explicitly (5.4) using (5.5), leads to conditions on the coefficients A

νρ1...ρ j
μ .

In general a solution for those conditions is not unique.
In the previous chapter we saw that in the case of the θ -deformed space the

commutation relation
[∂̂μ , x̂ν ] = δνμ (5.6)

is compatible with the commutation relations [x̂μ , x̂ν ] = iθμν .
For the κ-deformed space there exist several sets of differential calculi which

are all equivalent. Higher dimensional differential calculus is introduced in [15] and
some of its application to field theory is discussed in [16, 17]. However, we do not
wish to follow that approach here. Instead we continue with the analysis of (5.5).
Requiring that the right-hand side of (5.5) is at most linear in the derivatives gives
as one possible solution [18–20]

[∂̂n, x̂
μ ] = δ μn ,

[∂̂ j, x̂
μ ] = δ μj − iaημn∂̂ j, (5.7)

with ημν = diag(+,−, . . . ,−).
In the same way one can introduce Lorentz generators Mμν acting on the

κ-deformed space. Requiring the consistency with (5.3), that is,

Mρσ ([x̂μ , x̂ν ] − i Cμν
λ x̂λ

)
=

([x̂μ , x̂ν ] − iCμν
λ x̂λ

)
Mρσ = 0 (5.8)

gives

[Mi j, x̂μ ] = ημ j x̂i −ημix̂ j,

[Min, x̂μ ] = ημnx̂i −ημix̂n + iaMiμ . (5.9)

We see that Mi j commute with coordinates as in the undeformed algebra,1 while the
generators Min have deformed commutation relations with coordinates. We do not

1 This is to be expected since Mi j are Lorentz generators in the undeformed directions.
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refer to Min as boost generators, since n is not the time direction, Min include both
boosts M0n and rotations Mbn, b = 1, . . . ,n−1.

Using the results obtained so far the κ-deformed Poincaré Hopf algebra (for a
precise definition of Hopf algebras see Chaps. 7 and 8) can be written as
Algebra sector

[∂̂μ , ∂̂ν ] = 0,

[Mi j, ∂̂μ ] = δ j
μ ∂̂ i −δ i

μ ∂̂ j, [Min, ∂̂n] = ∂̂ i,

[Min, ∂̂ j] = δ i
j
e2ia∂̂n −1

2ia
− ia

2
δ i

j∂̂ l ∂̂l + ia∂̂ i∂̂ j,

[Mμν ,Mρσ ] = ημσMνρ +ηνρMμσ −ημρMνσ −ηνσMμρ . (5.10)

Coalgebra sector

Δ∂̂n = ∂̂n ⊗1+1⊗ ∂̂n,

Δ∂̂ j = ∂̂ j ⊗1+ eia∂̂n ⊗ ∂̂ j. (5.11)

ΔMi j = Mi j ⊗1+1⊗Mi j,

ΔMin = Min ⊗1+ eia∂̂n ⊗Min + ia∂̂k ⊗Mik. (5.12)

Counits and antipodes

ε(∂̂n) = ε(∂̂ j) = ε(Mi j) = ε(Min) = 0, (5.13)

S(∂̂n) = −∂̂n, S(∂̂ j) = −∂̂ je
−ia∂̂n ,

S(Mi j) = −Mi j,

S(Min) = −Mine−ia∂̂n + iaMik∂̂ke−ia∂̂n + ia(n−1)∂̂ ie−ia∂̂n . (5.14)

We see that the algebra sector (5.10) is deformed as well as the coalgebra sector
(5.11), (5.12) leading to the deformed Leibniz rules for ∂̂μ and Mμν . This basis is
called the bicrossproduct basis and was introduced for the first time in [12]. One
can find a basis in which the algebra sector is undeformed, but the coalgebra sec-
tor remains deformed [18–20] and we present some details of construction in the
following. In the classical limit, when the deformation parameter a → 0 deformed
Hopf algebras always reduce to the classical Poncaré Hopf algebra.

Let us look for a set of derivatives D̂μ which fulfill the consistency conditions
(5.4) and have the following commutation relations with Lorentz generators

[Mμν , D̂μ ] = ηνρ D̂μ −ημρ D̂ν . (5.15)

Expressed in terms of the derivatives ∂̂μ (5.7) derivatives D̂μ read

D̂n =
1
a

sin(a∂̂n)−
ia
2
∂̂ l ∂̂le

−ia∂̂n , D̂i = ∂̂ie
−ia∂̂n ; (5.16)
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also

[D̂n, x̂
n] =

√
1+a2D̂μ D̂μ ,

[D̂n, x̂
l ] = iaD̂l ,

[D̂ j, x̂
n] = 0,

[D̂ j, x̂
l ] = δ l

j

(
−iaD̂n +

√
1+a2D̂μ D̂μ

)
. (5.17)

These derivatives are sometimes called Dirac derivatives in the literature and we
keep that notation here. It is obvious that the Dirac derivatives are not linear deriva-
tives, the right-hand side of (5.17) being a complicated function of D̂ρ . These com-
plicated commutation relations lead to complicated Leibniz rules as well. Finally to
summarize, the κ-deformed Poincaré Hopf algebra which we will use from now on
is given by
Algebra sector

[D̂ρ , D̂σ ] = 0,

[Mμν , D̂ρ ] = δνρ D̂μ −δ μρ D̂ν ,

[Mμν ,Mρσ ] = ημσMνρ +ηνρMμσ −ημρMνσ −ηνσMμρ . (5.18)

Coproducts

ΔMi j = Mi j ⊗1+1⊗Mi j,

ΔMin = Min ⊗1+
iaD̂n +

√
1+a2D̂μ D̂μ

1+a2D̂lD̂l
⊗Min

+
iaD̂k

1+a2D̂lD̂l

(
iaD̂n +

√
1+a2D̂μ D̂μ

)
⊗Mik,

Δ D̂n = D̂n ⊗
(
−iaD̂n +

√
1+a2D̂μ D̂μ

)
+

iaD̂n +
√

1+a2D̂μ D̂μ

1+a2D̂lD̂l
⊗ D̂n

+ia
D̂k

1+a2D̂lD̂l

(
iaD̂n +

√
1+a2D̂μ D̂μ

)
⊗ D̂k,

Δ D̂ j = D̂ j ⊗
(
−iaD̂n +

√
1+a2D̂μ D̂μ

)
+1⊗ D̂ j. (5.19)

Counits and antipodes

ε(Mi j) = 0, S(Mi j) = −Mi j,

ε(Min) = 0, S(Min) = −Mine−ia∂̂n + iaMik∂̂ke−ia∂̂n + ia(n−1)∂̂ ie−ia∂̂n ,

ε(D̂n) = 0, S(D̂n) = −D̂n + iaD̂kD̂k
iaD̂n +

√
1+a2D̂μ D̂μ

1+a2D̂lD̂l
,
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ε(D̂ j) = 0, S(∂̂ j) = −D̂ j

iaD̂n +
√

1+a2D̂μ D̂μ

1+a2D̂lD̂l
. (5.20)

One sees from (5.18) that the algebra sector is undeformed (as it has been required),
but the coalgebra sector (5.19) is deformed for both Mμν and D̂ρ generators. To
be more precise, there is no deformation for the generators Mi j, because they are
Lorentz generators for the undeformed dimensions. Since the commutation rela-
tions (5.18) between the generators D̂μ and Mμν are undeformed, the representation
content of the noncommutative field theory will be exactly the same as for its com-
mutative correspondent. Note that that is not the case in the bicrossproduct basis
since the commutation relations (5.10) between generators are deformed. For this
reason the Dirac derivative (5.15)–(5.17) plays a special role in our approach.

5.3 Star product approach

So far we have worked in terms of the abstract algebra ˆAx̂. To have a physical theory
which makes predictions that can be checked by experiments we have to represent
the abstract algebra on the space of commuting coordinates. This can be achieved by
using the methods of deformation quantization, see Chap. 1. This method allows us
to describe the properties of a noncommutative space in a perturbative way, order by
order in the deformation parameter. In the zeroth order the commutative spacetime
is obtained. In that way a new product is introduced. It is called a �-product and it
is a deformation of the usual pointwise product.

Using the Poincaré–Birkhoff–Witt property [21] which was discussed in Chaps. 1
and 4, in the case of κ-deformed space we obtain the following expression for the
symmetrically ordered �-product

f �g(x) = lim
z→x
y→x

exp

(
x j∂z j

(
∂n

∂zn
e−ia∂yn 1− e−ia∂zn

1− e−ia∂n
−1

)

+x j∂y j

(
∂n

∂yn

1− e−ia∂yn

1− e−ia∂n
−1

))
f (z)g(y)

= f (x)g(x)+
i
2

Cμν
λ xλ (∂μ f )(∂νg)+ · · · . (5.21)

In zeroth order (5.21) is the same as the usual, commutative product and is a de-
formation of it. How this �-product arises in the twist formalism is discussed in
[22, 23].

An operator Ô acting on ˆAx̂ can be represented by a differential operator O�

acting on A �
x which is now the algebra of commuting coordinates with the �-product

(5.21) instead of the usual pointwise multiplication:
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f̂ (x̂) f (x)

(Ô f̂ )(x̂) (O� f )(x) .

� ��

�

��

Ô

�

��

O�

� ��

(5.22)

In the previous chapter we used this method to find the �-representation of the
derivatives ∂̂μ acting on the θ -deformed space and we obtained

∂ �
μ = ∂μ . (5.23)

In the case of κ-deformed space the situation is more complicated. The �-
representation of the Dirac derivatives introduced in (5.16) and their Leibniz rules
read:

D�
n f (x) =

(
1
a

sin(a∂n)−
cos(a∂n)−1

ia∂ 2
n

∂ j∂ j
)

f (x),

D�
i f (x) =

e−ia∂n −1
−ia∂n

∂i f (x), (5.24)

D�
n( f (x)�g(x)) = (D�

n f (x))� (e−ia∂ng(x))

+(eia∂n f (x))� (D�
ng(x)) (5.25)

−ia
(

D�
j e

ia∂n f (x)
)

� (D j�g(x)),

D�
i ( f (x)�g(x)) = (D�

i f (x))� (e−ia∂ng(x))
+ f (x)� (D�

i g(x)). (5.26)

The �-representation of the Lorentz generators Mμν (5.9) can be obtained in this
way as well [18–20].

5.4 Gauge theory on the κ-deformed space

In this section we introduce gauge theories on the κ-deformed space using the
Seiberg–Witten approach [24, 25] which was discussed in the previous chapter.

Let us introduce the infinitesimal noncommutative gauge transformation as

δ sw
Λ ψ = iΛ �ψ(x), (5.27)

where Λ is the noncommutative gauge parameter and ψ is the noncommutative
matter field.

Following the Seiberg–Witten idea we suppose that the noncommutative gauge
parameter can be expressed as a function of the commutative gauge parameter α =
αa(x)T a and the commutative gauge field Aμ = Aa

μT a, where T a are generators of
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the Lie algebra of the gauge group. That is, we consider

Λ ≡Λα =Λα(x;α,Aμ). (5.28)

Then one uses the algebra relations2

δ sw
α δ sw

β −δ sw
β δ sw

α = δ sw
−i[α,β ] (5.29)

to calculate explicitly this functional dependence. Inserting Λα = Λα(x;α,Aμ) in
(5.29) gives3

(Λα �Λβ −Λβ �Λα)�ψ+ i(δ sw
α Λβ −δ sw

β Λα)�ψ = δ sw
−i[α,β ]ψ. (5.30)

The equation (5.30) can be solved perturbatively. For that one has to expand the �-
product. Since we are interested in the gauge theories on the κ-deformed space we
use (5.21) and expand Λα as

Λα = α+aΛ 1
α + · · ·+akΛ k

α + · · · . (5.31)

Up to first order in the deformation parameter a the solution of (5.30) is

Λα = α− 1
4

xλCμν
λ {Aμ ,∂να}. (5.32)

Note that Λα is not Lie algebra valued. As in the case of the θ -deformed space the
solution (5.32) is not unique, one can always add to it solutions of the homogeneous
equation. Again, we do not discuss the nonuniqueness of the Seiberg–Witten map
here. A more interested reader can find details in [26]. Using (5.27) and the solution
for gauge parameter (5.32) one finds solution for the noncommutative matter field
as well

ψ = ψ0 − 1
2

xλCμν
λ Aμ(∂νψ0)+

i
8

xλCμν
λ [Aμ ,Aν ]ψ0, (5.33)

where ψ0 is the commutative matter field, δαψ0 = iαψ0 .
If one compares �-products for the θ -deformed space (Moyal �-product) and

for the κ-deformed space (5.21) one sees that up to first order in the deformation
parameter they are of the same form (just replace θμν with Cμν

λ xλ ). Therefore it
is not surprising that the solutions for Λα and ψ in the θ -deformed space can be
obtained from (5.32) and (5.33) by replacing Cμν

λ xλ with θμν (and the other way
around). However this analogy only applies in first order, in second order new terms
will appear in the case of κ-deformed space compared to the θ -deformed space.

2 Remember that because of (5.28) we can write δ sw
α ≡ δ sw

Λα instead of δ sw
Λ , see Section 4.4 for

details.
3 One should remember that now δ sw

α Λβ �= 0 because Λβ depends on the commutative gauge field
Aμ as well and δαAμ = ∂μα− i[Aμ ,α].
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5.5 Gauge fields

In order to solve the Seiberg–Witten map for the gauge field Vμ one first has to
choose ∂ �

μ derivatives. In the θ -deformed space ∂ �
μ = ∂μ is the most natural choice.

In the κ-deformed space there are more possibilities. We choose D�
μ derivatives

because of their vector-like transformation law (5.15). The covariant derivative4 is
introduced as D�

μψ = D�
μψ− iVμ �ψ . Under infinitesimal gauge transformations it

transforms as follows

δ sw
α (D�

μψ) = iΛα �D�
μψ. (5.34)

Then from (5.34) we obtain

(δ sw
α Vμ)�ψ = D�

μ(Λα �ψ)−Λα � (D�
μψ)+ i[Λα �, Vμ ]�ψ

�= (D�
μΛα)�ψ+ i[Λα �, Vμ ]�ψ.

The last line follows from the nontrivial Leibniz rules for D�
μ derivatives (5.25) and

(5.26). In order to continue we split between n and j indices.
First we have a look at the j index:

(δ sw
α Vj)�ψ = D�

j(Λα �ψ)−Λα � (D�
jψ)+ i[Λα �, Vj]�ψ

= (D�
jΛα)� e−ia∂nψ+ i[Λα �, Vμ ]�ψ, (5.35)

where we have used (5.26). In order to solve this equation we have to allow for
Vj to be a differential operator instead of being a function as usual. We make the
following ansatz

Vj �ψ = Ṽj � (e−ia∂nψ)

and insert it into (5.35). After using e−ia∂n( f �g) = (e−ia∂n f )� (e−ia∂ng) we find

δ sw
α Ṽj = (D�

jΛα)+ iΛα �Ṽj − iṼj �
(

e−ia∂nΛα
)

. (5.36)

This equation can be solved order by order in the deformation parameter. The solu-
tion up to first order in a is

Vj = A j − iaA j∂n −
ia
2
∂nA j −

a
4
{An,A j}

+
1
4

xλCμν
λ
(
{Fμ j,Aν}−{Aμ ,∂νA j}

)
, (5.37)

with the commutative field strength tensor Fμν = ∂μAν −∂νAμ − i[Aμ ,Aν ].

4 Note that in this chapter we use a different notation for the covariant derivative, since the symbol
D�
μ is reserved for the (non-covariant) Dirac derivative.
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For Vn one follows the same steps, using the Leibniz rule for the D�
n derivative

(5.25) this time. The solution up to first order in a is

Vn = An − iaA j∂ j −
ia
2

(∂ jA
j)− a

2
A jA

j

+
1
4

xλCμν
λ
(
{Fμn,Aν}−{Aμ ,∂νAn}

)
. (5.38)

From (5.37) and (5.38) we see that besides being enveloping algebra valued (a
consequence of noncommutativity, that is, of the �-product) the gauge field is also a
differential operator, see the second term in (5.37) and (5.38). This is a consequence
of the special properties of κ-deformed space, more concretely of the nontrivial
Leibniz rules for D�

μ derivatives. Looking at (5.37) and (5.38) we see explicitly
that the expansion in the enveloping algebra basis (4.58) and the expansion in the
deformation parameter a (5.31) do not match. For example, the term − ia

2 (∂ jA j) in
(5.38) is Lie algebra valued, but is a first-order term in a.

For completeness we repeat here also the solution for Vμ in the case of θ -
deformed space

Vρ = Aρ +
1
4
θμν

(
{Fμρ ,Aν}−{Aμ ,∂νAρ}

)
. (5.39)

This solution is not a differential operator since ∂μ derivatives have the undeformed
Leibniz rule.

Having the solutions of Seiberg–Witten map at hand, one calculates the field-
strength tensor defined as

F �
μν = i[D�

μ
�, D�

ν ]. (5.40)

Since the gauge field Vμ is a differential operator it is not surprising that also the
field strength tensor (5.40) is a differential operator. Therefore, we split the tensor
F �
μν into “curvature-like” and “torsion-like” terms, like one usually does in gravity

theories (but without any geometrical interpretation here)

F �
μν = F�

μν +T � ρ
μν D�

ρ + · · ·+T � ρ1...ρl
μν : D�

ρ1
. . .D�

ρl
: + · · · , (5.41)

where : : denote a basis in the algebra of covariant derivatives. For the action we will
only use the “curvature-like” term F�

μν and ignore all “torsion-like” terms. With this
we have all the ingredients to write Lagrangian densities up to the first order in a,
see [18–20] for details.

5.6 Integral and the action

To be able to write an action for noncommutative gauge theory we need an integral.
First we try with the usual integral on the n + 1 dimensional commutative space∫

dn+1x. It should have the cyclic property
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∫
dn+1x f �g =

∫
dn+1x g� f =

∫
dn+1x f ·g. (5.42)

This is required by the gauge invariance of the action for the gauge field. Namely,
from δ sw

α F�
μν = i[Λα �, F�

μν ] we have

δ sw
α (F�

μν �F� μν) = i[Λα �, F�
μν �F� μν ]. (5.43)

Then, the action for the gauge field

S =
∫

dn+1x Tr(F�
μν �F� μν) (5.44)

transforms as

δ sw
α

∫
dn+1x Tr(F�

μν �F� μν) (5.45)

=
∫

dn+1x Tr
(
iΛα �F�

μν �F� μν − iF�
μν �F� μν �Λα

)
.

Since the �-product (5.21) is noncommutative (5.45) will be equal to zero (the action
will be invariant) only if the integral is cyclic

∫
dn+1x ( f1 � f2 � · · ·� fk) =

∫
dn+1x ( fk � f1 � · · ·� fk−1). (5.46)

Cyclic property is also important if we want to formulate the variational principle,
see Chaps. 2 and 4.

In the canonically deformed space (5.42) is automatically fulfilled and the fol-
lowing analysis is not needed there. Unfortunately, in the case of κ-deformed space
(5.42) is not fulfilled. One way to repair this is to introduce a measure function μ(x)
such that ∫

dn+1x μ(x) ( f �g) =
∫

dn+1x μ(x) (g� f ). (5.47)

Expanding (5.47) up to first order in a one finds a condition on the measure function

∂ρ
(

Cρσ
λ xλ μ(x)

)
= 0, (5.48)

that is
∂nμ(x) = 0, x j∂ jμ(x) = −nμ(x). (5.49)

It has been shown in [27] that for a given �-product there always exists an equivalent
�-product5 for which the integral (5.47) is cyclic to all orders. In our example of the
symmetrically ordered �-product (5.21) condition (5.48) ensures cyclicity of the

5 Two �-products � and �′ are equivalent if there exists a map D such that D = 1+O(h), with the
deformation parameter h and

D( f �g) = D( f )�′ D(g). (5.50)
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integral (5.47) to all orders in a [28, 29]. Equations (5.49) can be solved; however,
the solution is not unique. Additionally, the solution for μ(x) is a independent so
it does not vanish in the commutative limit a → 0. This means that it will spoil the
classical limit of the theory (equations of motion for example). And because of its
explicit x-dependence6 it will break the κ-Poincaré invariance of the integral.

Besides the one just described, there are other notions of integration, each of them
with some interesting properties. For example, one can relax the cyclicity condition
and construct an integral which is κ-Poincaré covariant by using the quantum trace
method [28]. The integral obtained in that way does not have the cyclic property,
therefore, it is not convenient for analyzing gauge theories. An integral that is quasi-
cyclic is defined in [30], but its application to field theory is still to be analyzed.

So far there has not been a completely satisfactory answer to the question of
proper definition of the integral on κ-deformed space. In the case of U(1) gauge
theory a gauge-invariant action is constructed in [31], but the analysis is still far from
being complete. For some work concerning formulations of quantum field theory
on the κ-Minkowski space see [32, 33] and references therein. Attempts to apply
Noether theorem and construct conserved charges in κ-Minkowski space are made
in [16, 17] and in [34, 35]. However, the construction of conserved quantities when
a deformed symmetry is present is still an open question and a subject of ongoing
research, see for example [36, 37].
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Nucl. Phys. B717, 387 (2005), [hep-th/0409012]. 73

7. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by
an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D 11, 35 (2002), [gr-
qc/0012051]. 74

8. G. Amelino-Camelia, Testable scenario for relativity with minimum-length, Phys. Lett. B 510,
255 (2001), [hep-th/0012238]. 74

9. J. Magueijo and L. Smolin. Lorentz invariance with an invariant energy scale, Phys. Rev.
Lett. 88, 190403 (2002), [hep-th/0112090]. 74

10. J. Kowalski-Glikman, Introduction to doubly special relativity, Lect. Notes Phys. 669, 131
(2005), [hep-th/0405273]. 74

6 One possible solution for μ(x) is μ = 1
x0x1...xn−1 .



5 Another Example of Noncommutative Spaces: κ-Deformed Space 85

11. J. Kowalski-Glikman, Doubly special relativity: facts and prospects, gr-qc/0603022. 74
12. S. Majid and H. Ruegg, Bicrossproduct structure of κ-Poincaré group and noncommutative
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Chapter 6
Noncommutative Spaces

Fedele Lizzi

In this chapter we present some of the basic concepts needed to describe noncommu-
tative spaces and their topological and geometrical features. We therefore comple-
ment the previous chapters where noncommutative spaces have been described by
the commutation relations of their coordinates. The full algebraic description of or-
dinary (commutative) spaces requires the completion of the algebra of coordinates
into a C�-algebra, this encodes the Hausdorff topology of the space. The smooth
manifold structure is next encoded in a subalgebra (of “smooth” functions). Relax-
ing the requirement of commutativity of the algebra opens the way to the definition
of noncommutative spaces, which in some cases can be a deformation of an ordinary
space. A powerful method to study these noncommutative algebras is to represent
them as operators on a Hilbert space. We discuss the noncommutative space gener-
ated by two noncommuting variables with a constant commutator. This is the space
of the noncommutative field theories described in this book, as well as the elemen-
tary phase space of quantum mechanics. The Weyl map from operators to functions
is introduced in order to produce a �-product description of this noncommutative
space.

6.1 Commutative geometry (and topology)

In Hilbert’s foundations of geometry [1] the concepts of points, lines, and planes
are considered intuitive and no attempt is made to define them. These “undefined”
points are nevertheless the basis of any topological space, differentiable manifold,
bundle, and so on, all geometrical concepts built on spaces made of points. This
gave the impression that geometrical notions cannot survive without points. Quan-
tum mechanics forced a change of this attitude. While in classical mechanics the
state of a system can be described by a point in a phase space, Heisenberg’s uncer-
tainty principle makes the concept impossible in quantum mechanics. This led von
Neumann [2] to speak of pointless geometry.

Lizzi, F.: Noncommutative Spaces. Lect. Notes Phys. 774, 89–109 (2009)
DOI 10.1007/978-3-540-89793-4 6 c© Springer-Verlag Berlin Heidelberg 2009
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In the following we introduce the basic mathematics of noncommutative geom-
etry at an unspecialized level, that of a high-energy physics student for example.
Sometimes we sacrifice rigor and refer to some of the classic reference books [3–6]
for details and proofs. An extended and more rigorous treatment of the topics of this
chapter will also appear in the forthcoming book [7].

In the present section we discuss ordinary topology and geometry from a point of
view which enables its generalization to a noncommutative setting. The main tool is
the transcription of the usual geometrical concepts in terms of algebras of operators.
The starting point is a series of theorems due to Gel’fand and Naimark (for a review
see for example [4, 5]). They established a complete equivalence between Hausdorff
topological spaces and commutative C∗-algebras. From a physicist point of view
one can look at this activity as describing the topology (and geometrical properties)
of a space not seeing it as a set of points, but as the set of fields defined on it. In
this sense the tools of noncommutative geometry resemble the methods of modern
theoretical physics.

6.1.1 Topology and algebras

A topological space M is a set on which a topology is defined: a collection of open
subsets obeying certain conditions, this enables the concept of convergence of suc-
cession of points xn ∈ M to a limit point x = limn xn. Together with the concept of
convergence goes the notion of continuous function. A function from a topological
space into another topological space is continuous if the inverse image of an open
set is open, but as a consequence it maps convergent sequences into convergent se-
quences:

lim
n

f (xn) = f (x). (6.1)

A Hausdorff topology makes the space separable, i.e., given two points it is always
possible to find two disjoint open sets each containing one of the two points. The
common topological spaces encountered in physics (for example, manifolds) are
separable.

Of particular interest in this context is the set of complex-valued continuous func-
tion. They form a commutative algebra because the sum or product of two continu-
ous functions is still continuous. We will show how it is possible to define the topol-
ogy of a space from the algebra of continuous functions on it. Moreover, we will
show how to construct the topological space starting from the abstract algebra. On
one hand every Hausdorff topological space defines naturally a commutative alge-
bra, the algebra of continuous complex-valued functions over it. Remarkably, under
certain technical assumptions spelled below, the reverse is also true, i.e., given a
commutative algebra A as an abstract entity, it is always possible to find a topologi-
cal space whose algebra of continuous functions is A . Therefore, we can establish a
complete equivalence between topological spaces and algebras. In the following we
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will describe these mathematical structures from an “user” point of view, keeping
the technicalities at a minimum and refer the literature for proofs and details.

The technical assumptions we have mentioned are resumed in the fact that the
algebra A must be a C∗-algebra. This is, first of all, a vector space with the structure
of an associative algebra over the complex numbers C, i.e., a set on which we can
define two operations, sum (associative and commutative) and product (associative
but not necessarily commutative), and the product of a vector by a complex number,
with the following properties:

(1) A is a vector space over C, i.e., αa+βb ∈ A for a,b ∈ A and α,β ∈ C.
(2) It is distributive over addition with respect to left and right multiplication, i.e.,

a(b+ c) = ab+ac and (a+b)c = ac+bc, ∀ a,b,c ∈ A .

A is further required to be a Banach algebra:

(3) It has a norm ‖ · ‖ : A → R with the usual properties

a) ‖a‖ ≥ 0 , ‖a‖ = 0 ⇐⇒ a = 0
b) ‖αa‖ = |α|‖a‖
c) ‖a+b‖ ≤ ‖a‖+‖b‖
d) ‖ab‖ ≤ ‖a‖‖b‖

The Banach algebra A is called a ∗-algebra if, in addition to the properties above,
it has a hermitian conjugation operation ∗ (analogous to the complex conjugation
defined for C) with the properties

(4) (a∗)∗ = a
(5) (ab)∗ = b∗a∗

(6) (αa+βb)∗ = ᾱa∗ + β̄b∗

(7) ‖a∗‖ = ‖a‖
(8) ‖a∗a‖ = ‖a‖2

for any a,b ∈ A and α,β ∈ C, where ᾱ denotes the usual complex conjugate of
α ∈ C. Finally,

(9) It is complete with respect to the norm.

C∗-algebras play a very important role in mathematics because as we will see their
study is basically the study of topology. A good introduction to their properties is
found in the book [8].

Example 6.1.
Examples of C∗-algebras are n × n matrices, bounded operators on an infinite-
dimensional Hilbert space, as well as compact operators. The norm is the supre-
mum norm in all these cases. These are noncommutative, examples of commutative
algebras are C itself, or the continuous functions on the plane. Note that several
commonly used algebras do not satisfy all of the definitions. For example, the set
of upper triangular matrices does not have the hermitian conjugation, trace class
operators are not complete, and the Hilbert space of L2 functions has a norm which
does not satisfy item (8) above. �
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Every Hausdorff topological space has a natural commutative C∗-algebra asso-
ciated with it: the algebra of continuous complex-valued functions. If the space is
compact this algebra contains the unity I and is called unital. The converse is also
true. Every unital commutative C∗-algebra is the C∗-algebra of continuous func-
tions on some compact topological space. Nonunital algebras are similarly associ-
ated with noncompact Hausdorff spaces.

6.1.2 Reconstructing the space from the algebra

We now show how the topological space can be reconstructed from the algebra. We
first introduce the notion of state. A state is a linear functional from a C∗-algebra A
(not necessarily commutative) into complex numbers:

φ : A −→ C, (6.2)

with the positivity and normalization requirements

φ(a∗a) ≥ 0 ∀a ∈ A , ‖φ‖ = 1 . (6.3)

In this case the norm is defined as

‖φ‖ = sup
‖a‖≤1

{φ(a)} . (6.4)

If the algebra is unital φ(I) = 1.
The space of states is convex, i.e., any linear combination of states of the kind

cos2λφ1 + sin2λφ2 is still a state for any value of λ . Some states cannot be ex-
pressed as such convex sum, they form the boundary of the set and are called pure
states.

Example 6.2.
Consider the case of n× n complex-valued matrices. A state is given by a matrix
(which with an abuse we still call φ ) with the definition

φ(a) = Trφa. (6.5)

Positivity requires the matrix φ to be self-adjoint with positive eigenvalues, and
normalization requires it to have unit trace. Since the matrix is self-adjoint it can
be diagonalized. There are two possibilities. Either more than one eigenvalues is
different from zero, and in this case it is immediate to see that we can write it as the
convex sum of two diagonal matrices of trace 1. Alternatively only one eigenvalue is
different from zero, and it must be the unity. In this case it is not possible to express
φ as the convex sum of two matrices of trace 1, since positivity requires diagonal
elements to be positive numbers less than 1. So pure states are nothing else but
pure density matrices, which correspond to the projectors, these in turn are in a
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one-to-one correspondence with the normalized n-dimensional vectors (the rays).
This construction can be carried over to the infinite-dimensional case, considering
bounded operators on an infinite-dimensional separable Hilbert space. �

Consider next a commutative algebra and its set of pure states. We can give to
this set a topology as follows: given a succession of pure states δxn we find its limit
as

lim
n
δxn = δx ⇔ lim

n
δxn(a) = δx(a) ∀a ∈ A . (6.6)

We have constructed the topological space associated with the C∗-algebra A . We
have therefore a duality between topological spaces and C∗-algebras: a topologi-
cal space determines the C∗-algebra of its continuous complex-valued functions.
Conversely any commutative C∗-algebra, using uniquely algebraic techniques, de-
termines a topological space whose algebra of continuous functions is the initial
C∗-algebra.

The reconstruction of the topological space from the algebra via the set of pure
states is one of various equivalent ways to obtain the space from the algebra. It is
worth to briefly comment on some of the alternatives since in the noncommutative
case these are not anymore the same and capture different aspects of the noncommu-
tative geometry. For commutative algebras it turns out that the space of pure states
is the same as the state of irreducible one-dimensional representations. It is possible
to give a topology (called regional topology) [9] directly on the space of represen-
tations of an algebra, and in the commutative case this topology is the same as the
one described earlier. In this case the space of points is also the same as the space
of maximal ideals of the algebra. An ideal of an algebra is a subalgebra I with the
property that

ab ∈ I ∀a ∈ A , ∀b ∈ I , (6.7)

the relevant example of ideal for the algebra of functions on some space is the set of
functions vanishing in some closed set. Recall that if a continuous function vanishes
on some set of a topological space, it will vanish also on the closure of the set, there-
fore the structure of ideals feels the topology of the underlying space. A maximal
ideal is an ideal which is not contained in any other ideal (and is not the whole al-
gebra). Since the ideal of functions vanishing in a given set is contained in the ideal
of functions vanishing in any smaller set contained in the first set, it is intuitively
obvious that the functions vanishing at a given point are an ideal not contained in
any other ideal, hence the one-to-one correspondence between points and maximal
ideals. A topology based on the closure of the set of ideals can be given (called
hull-kernel topology), thus giving a third (equivalent) manner to reconstruct a space
from a C∗-algebra. We have seen three different sets that we can build exclusively
form the algebra:

– pure states
– irreducible (one-dimensional) representations
– maximal ideals

On this set we can build, purely algebraically, three topologies, which turn out to be
same for commutative algebras.
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6.1.3 Geometrical structures

We have mainly dealt so far with the topology of Hausdorff spaces, which we can
call, in the spirit of these notes, commutative spaces. What about the other geometri-
cal structures? We can transcribe all standard concepts of geometry at the algebraic
level, as properties of C∗-algebras and of other operators. This program, started by
Connes [3], has been going for some time in the construction of some sort of dic-
tionary transcribing the concepts of commutative geometry into concepts connected
to C∗-algebras. The aim of this exercise should be evident: once we have translated
pointwise geometry into operations at the algebraic level, these are more robust
and can still be used at the level of noncommutative C∗-algebras, thus describing a
noncommutative geometry. Let us give a few entries of this continuously evolving
dictionary.

The presence of a smooth structure, i.e., a manifold structure, is equivalent to
considering a subalgebra A∞ ⊂ A of “smooth” functions. This subalgebra can be
given the structure of a Fréchet algebra, which is a locally convex algebra with its
topology generated by a sequence of seminorms ‖ · ‖k which separate points: that is,
‖a‖k = 0∀k ⇔ a = 0. The seminorms for this algebra are

‖a‖k = sup
x∈M

{ |∂αa(x)| for |α| ≤ k } . (6.8)

A theorem of Serre and Swan establishes an equivalence between bundles and
modules. A bundle E over topological space M (called the base) is a triple composed
by E (which is also a topological space), M, and a continuous surjective map π : E →
M and such that for each x ∈ M the space π−1(x) is homeomorphic to a space F ,
called the typical fiber. When F is a vector space we have a vector bundle. Locally
the bundle is trivial, i.e., there is a covering Ui of M such that locally π−1(Ui) =
Ui ×F . A section of a bundle is a map s : E → M such that π ◦ s = idM. Examples
of bundles abound in physics, often with the further structures, like fiber bundles,
which are vector bundles together with the action of a group G on the fiber F .
Yang–Mills fields are sections of fiber bundles. It turns out that a vector bundle
over a manifold M is completely characterized by its space of smooth sections E =
Γ (E,M).

It is possible to substitute the concept of bundle with the one of projective mod-
ule. A left module E is a vector space over C on which the algebra acts, that is, for
a,b ∈ A , η ,xi ∈ E we have

aη ∈ E (6.9)

and

(ab)η = a(bη) , (a+b)η = aη+bη , a(η+ξ ) = aη+aξ . (6.10)

The definition of right module is analogous. We have purposive used the same sym-
bol for the sections of a bundle and for the module, since the latter is a relevant ex-
ample of the former, where the algebra is the algebra of continuous functions over
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the base. A module E is finite if it is generated by a finite number of generators, and
it is projective if given any two other modules M and N , and a homomorphism
φ : M → N connecting them, then any surjective homomorphism φM : E → M
can be lifted to a homomorphism such that φN = φ ◦φM . What this means actually is
quite simple, it is saying that, heuristically, any finite projective module is made of
matrices with elements in the algebra. The Serre–Swan theorem then says that any
finite projective module over the algebra of smooth functions is isomorphic to the
space of sections of a bundle and that conversely the space of sections of a bundle
is isomorphic to a finite projective bundle. This means that it is always possible to
write the space of sections Γ (E,M) = pA N where p is a matrix of elements of the
algebra p ∈ MN(A ) with the property that p2 = p.

The transcription in algebraic terms of geometry comprises several more entries.
Differential forms are realized as operators with the help of a generalized Dirac
operator D, integrals of functions are calculated as traces of the corresponding op-
erators, and the list goes on to comprise several more entries. It is possible to char-
acterize a manifold, given by an algebra A∞ with its differential structure, given by
the generalized Dirac operator D, exclusively in algebraic terms [10]. The dimen-
sionality is encoded in the growth of the eigenvalues of D, differentiability is given
by multiple commutators of the elements of the algebra with D, as well as the do-
main of Dm acting on the Hilbert space on which A∞ is represented. There are other
conditions which mirror smoothness. We refer to the cited literature for details of
this and the other entries of the dictionary and proceed to the generalization of this
commutative geometry to noncommutative spaces.

6.2 Noncommutative spaces

In the previous section we have established the one-to-one correspondence between
commutative C∗-algebras and ordinary Hausdorff spaces and we have shown how
to reconstruct the points using purely algebraic methods. It now is possible to go
beyond commutativity and define a noncommutative space as the object described
by a noncommutative C∗-algebra. One can now ask if there are still points and a
topology to recognize in this novel setting. In general we can still recognize a set of
pure states, of representations (possibly of dimension larger than one), and of max-
imal ideals (now one has to distinguish among left, right, or bilateral ideals). These
spaces now do not coincide anymore. Moreover, the algebra of continuous func-
tions on the “points”, being commutative, cannot anymore be the starting algebra.
The concept of point becomes evanescent, and in some cases one is forced to aban-
don it altogether. Take for example the set of n× n complex matrices. It has only
one representation (n-dimensional), but not one-dimensional representations. It has
n unitarily equivalent pure states and no maximal ideals (apart from the whole alge-
bra). One could be tempted to say that it describes a single point, but there is more
structure in this algebra than in its commutative counterpart (complex numbers).
The same can be said in the infinite-dimensional case of compact operators. We will
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see below that the equivalence of these algebras with C as far as the representations
are concerned is captured by Morita equivalence.

6.2.1 The GNS construction

Still it is possible to do geometry, noncommutative geometry. This means that we
extract geometric information directly form the algebra. The main technique is to
represent the C∗-algebra in a Hilbert space. There is another result due to Gel’fand
and Naimark (and Segal) which states that any C∗-algebra can be represented as
bounded operators on a Hilbert space, and this of course strikes a chord in the hearth
of physicists! The proof is constructive, namely, given a C∗-algebra one has a natural
procedure (called GNS construction) to build a Hilbert space on which the algebra
acts as bounded operators, with the C∗ norm given by the operatorial norm.

The GNS construction is based on the fact that since every algebra has an obvious
action on itself, we can consider the algebra itself as the starting vector space for the
construction of the Hilbert space. To make this space a Hilbert space we first need
an inner product with certain properties, and then we need to complete in the norm
given by this product. Note that the Hilbert space norm is not the original norm of
the C∗-algebra.

First we note that any state φ gives a bilinear map with some of the properties of
inner product: φ(a∗b). The problem with this map is that there may be instances in
which φ(a∗a) is zero, even if a is not the null vector. To this end consider the space
of null elements defined as,

Nφ = {a ∈ A | φ(a∗a) = 0} . (6.11)

This space turns out to be a left ideal. This can be proven using the relation

φ(a∗b∗ba) ≤ ‖b‖2φ(a∗a) , (6.12)

so that a ∈ Nφ ⇒ ba ∈ Nφ ∀b ∈ A . This ideal of null states can be eliminated by
considering the space of equivalence classes of the elements of A up to elements of
Nφ . We can then equip this space with the scalar product

〈[a], [b]〉φ = φ(a∗b) . (6.13)

This product is by definition independent from the representative of the equivalence
class. It defines a norm, and the Hilbert space is the topological completion of the
space of equivalence classes with respect to this norm.

The algebra A is naturally represented on the Hilbert space by associating to any
element a ∈ A an operator â with action

â[b] = [ab] , (6.14)

and again the action does not depend on the representative.
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Thus, we have a representation of our algebra on the Hilbert space. The operators
corresponding to the elements of A are bounded, in fact, expressing with

‖â‖φ = sup
φ(b∗b)≤1

φ(b∗a∗ab), (6.15)

we have the operator norm on the Hilbert space, using (6.12)

‖â[b]‖2 = φ(b∗a∗ab) ≤ ‖a‖2φ(b∗b), (6.16)

and considering the supremum over φ(b∗b)≤ 1 one obtains ‖â‖φ ≤ ‖a‖. Therefore,
since all operators of a C∗-algebra have finite norms, â is a bounded operator on the
Hilbert space Hφ that we have just built. Note that the association of an operator to
the element of the algebra depends on the choice of the state φ .

Conversely, given an algebra of bounded operators on a Hilbert space, any nor-
malized vector |ξ 〉 defines a state with the expectation value

φξ (a) = 〈ξ | â |ξ 〉 . (6.17)

It results that to any state φ it corresponds a vector state, i.e., there is a vector
ξφ ∈ Hφ such that 〈

ξφ
∣∣ â ∣∣ξφ

〉
= φ(a) . (6.18)

The vector ξφ is defined by

ξφ := [I] = I+Nφ (6.19)

and is readily seen to verify (6.18). Furthermore, the set {πφ (a)ξφ | a ∈ A } is just
the dense set A /Nφ of equivalence classes. This fact is encoded in the definition of
cyclic vector. The vector ξφ is cyclic for the representation (Hφ ,πφ ). By construc-
tion, a cyclic vector is of norm one: ‖ξφ‖2 = ‖φ‖ = 1.

The cyclic representation (Hφ ,πφ ,ξφ ) is unique up to unitary equivalence. It can
be shown that this representation of the algebra is irreducible if φ is a pure [11] state.

Example 6.3.
Let us consider the example of the commutative algebra of continuous functions on
the real line vanishing at infinity. Choosing as pure state

δx0(a) = a(x0), (6.20)

the null space is given by all functions vanishing at x0. The inner product is then
given by

〈a,b〉δ = a(x0)∗b(x0) , (6.21)

and the Hilbert space turns out to be just C. The algebra acts on this space by
multiplication of complex numbers:

â[b] = a(x0)b(x0) . (6.22)
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We should not be surprised of the fact that the Hilbert space is C, the state is
pure, and the only irreducible representations of a commutative algebra are one-
dimensional.

The situation is different if we choose a non-pure state, for example,

φ(a) =
1√
π

∫ ∞

−∞
dxe−x2

a(x). (6.23)

This time there are no nonzero elements of the algebra such that φ(a∗a) = 0. The
Hilbert space therefore contains the continuous functions, the inner product is given
by

〈a,b〉φ =
1√
π

∫ ∞

−∞
dxe−x2

a∗(x)b(x). (6.24)

The completion of this space gives the space L2(R) with a gaussian measure. Then
the operator representation of the algebra is just given by the pointwise multiplica-
tion of functions

âb(x) = a(x)b(x) . (6.25)

�

Example 6.4.
Let us give a noncommutative example: the matrix algebra M2(C) with the two pure
states

φ1

([
a11 a12

a21 a22

])
= a11 , φ2

([
a11 a12

a21 a22

])
= a22 . (6.26)

The corresponding representations are equivalent, being indeed both equivalent to
the defining two-dimensional one. The ideals of elements of “vanishing norm” of
the states φ1,φ2 are, respectively,

N1 =
{[

0 a12

0 a22

]}
, N2 =

{[
a11 0
a21 0

]}
. (6.27)

The associated Hilbert spaces are then found to be

H1 =
{[

x1 0
x2 0

]}
� C

2 =
{

X =
(

x1

x2

)}
,
〈
X ,X ′〉= x∗1x′1 + x∗2x′2 ,

H2 =
{[

0 y1

0 y2

]}
� C

2 =
{

Y =
(

y1

y2

)}
,
〈
Y,Y ′〉= y∗1y′1 + y∗2y′2 .

(6.28)

As for the action of any element A ∈ M2(C) on H1 and H2, we have

π1(A)
[

x1 0
x2 0

]
=
[

a11x1 +a12x2 0
a21x1 +a22x2 0

]
≡ A

(
x1

x2

)
,



6 Noncommutative Spaces 99

π2(A)
[

0 y1

0 y2

]
=
[

0 a11y1 +a12y2

0 a21y1 +a22y2

]
≡ A

(
y1

y2

)
. (6.29)

The two cyclic vectors are given by

ξ1 =
(

1
0

)
, ξ2 =

(
0
1

)
. (6.30)

The equivalence of the two representations is provided by the off-diagonal matrix

U =
[

0 1
1 0

]
, (6.31)

which interchanges 1 and 2 : Uξ1 = ξ2. Since π1 and π2 are irreducible represen-
tations and since any nonvanishing vector is a cyclic vector if the representation
is irreducible, we see that π1 and π2 are unitary equivalents and can therefore be
identified. �

6.2.2 Commutative and noncommutative spaces

Sometimes, even in the presence of a noncommutative algebra, we are still in
the presence of an ordinary space. Consider functions from a manifold into n× n
complex-valued matrices. In this case the algebra can obviously still be associated
with the original manifold, and we cannot really talk of a noncommutative geometry.
Note that in this case, since algebra of n× n matrices has only one representation,
we have one representation for each point of the original manifold, as in the commu-
tative case. There are more pure states, as in (6.26), but they are unitarily equivalent.
It is like we had points, but with an inner structure. This is sometimes refereed to as
an “almost commutative geometry”.

This characteristic is captured by the concept of (strong) Morita equivalence [12].
Two C∗-algebras A and B are Morita equivalent if there exists a complex vector
space E which is a left module for A and a right one for B. In E two inner prod-
ucts,1 are defined with values in the two algebras, such that the representations are
continuous and bounded, and with the property

〈η ,ξ 〉A χ = η 〈ξ ,χ〉B ∀ η ,ξ ,χ ∈ E . (6.32)

The important property of Morita equivalent algebras is that they have the
same space of (classes of unitary inequivalent) representations with the same
topology. In particular all algebras, Morita equivalent to commutative algebras,
are algebras of function from some Hausdorff topological space which can be
uniquely reconstructed. Morita equivalent algebras also have the same (algebraic)

1 There are other requirements of continuity and density for the definition. The two inner products
are sesquilinear forms with the usual properties. For details see [5].
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K-theory. Hence in some sense two Morita equivalent algebras are algebras of func-
tions on the same “space”.

6.2.3 Deformations of spaces

There are several noncommutative spaces that have been studied: deformations
(with one or more continuous parameters) of commutative algebras of functions on
a topological space, or algebras of matrix-valued functions on commutative spaces.
There are then truly noncommutative structures that are not linked to a “classical”
(commutative) manifold. In some instances these NC algebras can be associated
with non-Hausdorff spaces, the typical example being that of torus foliations for ir-
rational theta. Similarly examples of spaces with a nonseparating topology in which
a finite set of points can keep track of the homotopy of the original space are de-
scribed in [13].

The standard example of a genuine noncommutative geometry is the noncommu-
tative torus [3, 5] which we now briefly describe. In Fourier transform one can write
functions on the torus (characterized by xi ∈ [0,1]) as

f (x) =∑ fmnUn
1 Um

2 , (6.33)

with Ui = e2πixi and obviously U1U2 = U2U1. In this setting continuous functions
are the ones with coefficients such that limni→±∞ fn1n2 → 0 faster than n−2

i . From
this C∗-algebra it is possible to reconstruct the torus as a topological space as shown
in the previous section. If one now generalizes the commutation relation of the U’s
to the case

U1U2 = ei2πθU2U1, (6.34)

the algebra generated by (6.33) is a noncommutative algebra; it describes a defor-
mation of the torus called noncommutative torus. When θ is irrational there is no
ordinary space underlying it, in this case we are in the presence of a truly noncom-
mutative space. The name noncommutative torus is given to various completions,
with different norms, of the algebra (6.33) with the relation (6.34), corresponding
to functions continuous, differentiable, analytic, etc. They all correspond to the var-
ious classes of functions of a “manifold” whose coordinates obey the commutation
relation [x1,x2] = iθ . It should however be kept in mind that this is just an heuristic
view, as it is impossible to talk of a topological space in this case. We do not have
the points of the space in this case!

Noncommutative tori are very different mathematical structures in the cases of θ
rational or irrational. In the first case, θ = p/q, p,q integers, the noncommutative
torus is Morita equivalent to the algebra of functions on the ordinary torus [14],
they are in fact isomorphic to the algebra of q× q matrices on a torus. In the ir-
rational case the algebra does not describe any Hausdorff topological space. It can
be seen that they describe the space of orbits of the points of a circle under the ac-
tion of rotation of an angle 2πθ . As is known every orbit is dense, and therefore
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in the neighborhood of any point there is the whole space. If one considers then
the circle quotiented by these rotations the Hausdorff topology would give a single
point. Likewise if we consider functions which are constant on any given orbit, we
obtain only functions constant on the circle. In noncommutative geometry there is
a well-defined procedure, called the crossed product, which, starting from the ac-
tion of functions on a manifold and the action of a group on it, gives the algebra on
the quotient space. The application of this procedure to the case of the circle with
the action of discrete irrational rotations gives the algebra of the noncommutative
torus. Hence the noncommutative algebra captures more structure. In general non-
commutative tori with parameters θ and θ ′ are Morita equivalent iff the parameters
are connected by a SL(2,Z) transformation:

θ ′ =
aθ +b
cθ +d

, ad −bc = 1, (6.35)

with a,b,c,d integers.
Finally, a relevant example of noncommutative spaces is that of quantum groups

and Hopf algebras, discussed in the next chapter.

6.3 The noncommutative geometry of canonical commutation
relations

The original example of a noncommutative space is quantum phase space; this is
a well-established concept from the early days of quantum mechanics, with h̄ a
dimensionful quantity, with the dimensions of the area of the phase space of a one-
dimensional particle. It is a “small” parameter, in the sense that in the limit in which
it goes to zero, classical mechanics should emerge. In the usual view, for example
in the courses of the standard physics curriculum, quantum and classical mechanics,
however, are two different theories, using different mathematical tools, and the pas-
sage from one to the other (the classical limit) is not an immediate and unambiguous
procedure. In reality there is a procedure, deformation quantization, which connects
the two. In this case quantum mechanics is seen as a deformation of the classical
theory, and the two theories are both seen as a theory of states on the ∗-algebra of
observables. The crucial difference between the two theories is that in the quantum
case the algebra is noncommutative.

The geometry underlying Hamiltonian classical mechanics is a Poisson (sym-
plectic) geometry. The space of position and momenta, the phase space, is equipped
with a Poisson bracket, and time evolution is generated by a Hamiltonian vector
field. The set of functions on phase space is the set of observables of the theory:
position, momentum, angular momentum, energy, temperature, etc. Under the con-
ditions described in the first sections of this chapter it is possible to reconstruct the
phase space from these observables. It is important that we can shift the emphasis



102 Fedele Lizzi

from the points of phase space to the observables. The points are then the (pure)
states of the algebra of observables.

Quantum mechanics forces the loss of the classical phase space; positions and
momenta are substituted by noncommuting self-adjoint operators. We like to say that
quantization is the rendering of a classical phase space a noncommutative geometry.
In this section we will discuss the quantum phase space of a one-dimensional parti-
cle. This is an important and relevant example per se, but if we change the notation
and send the pair p,x into the pair x1,x2, and h̄ → θ , we are then considering the
standard, canonical, noncommutative geometry discussed in most of this book.

The barest minimum for a manifold to be seen as a phase space is the presence
of the Poisson bracket, a bilinear map among C∞(M) functions on M

{·, ·} : C∞(M)×C∞(M) −→C∞(M) , (6.36)

with the properties of being antisymmetric, satisfying the Jacobi identity, and the
Leibniz rule

{ f ,gh} = g{ f ,h}+{ f ,g}h . (6.37)

A Poisson bracket is defined by a Poisson bivector Λ ∈ Γ (M,∧2T M), which satis-
fies the (Jacobi) property

Λ il∂lΛ jk +Λ jl∂lΛ ki +Λ kl∂lΛ i j = 0, (6.38)

where ∂i := ∂/∂ui and the u’s are the local coordinates of M.
We consider the case of a two-dimensional phase space M = R

2 with global
coordinates (x, p) and Poisson bracket

{ f ,g} =
∂ f
∂x

∂g
∂ p

− ∂ f
∂ p

∂g
∂x

. (6.39)

A state of the physical system is a point of the phase space, or more generally a
probability distribution. The terminology is the same as in Sect. 6.1, and indeed the
pure states are the points, while the non-pure states are probability distributions, in
which the system is in a probabilistic superposition of states.2 Classical observables
are (real) functions on M, and the C∗-algebra they generate carries all topological
information of the phase space. Some observables are the infinitesimal generators
of a physically relevant transformation, the infinitesimal variation being given by
the Poisson bracket, for example, time evolution is generated by the Hamiltonian
function

d f
dt

=
∂ f
∂ t

+{H, f} , (6.40)

rotations are generated by the angular momentum, etc.

2 Note that the ensuing uncertainty of measurement is not the one inherent to measurement in
quantum mechanics, but it only reflects the possibility that the state of a system is not completely
known.
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All this has to change drastically upon quantization and the presence of an uncer-
tainty principle. Observables are not defined anymore as functions, but as operators
on a Hilbert space, and they form a noncommutative algebra. Contact with classical
mechanics is via the correspondence principle, which associates to each classical
observable f an element f̂ of a noncommutative algebra, with the basic requirement
that the Poisson bracket is replaced (to leading order) by the commutator:

{ f ,g} 
−→ − i
h̄
[ f̂ , ĝ] . (6.41)

This brings about the usual commutation relation between position and momentum:

[x̂, p̂] = i h̄ . (6.42)

As is known x̂ and p̂ are unbounded operators, but it is possible to exponentiate
them to obtain unitary operators and use them to build a C∗-algebra. This can then
be represented as an algebra of bounded operators on some Hilbert space. The most
common representation is on L2(Rx), the square integrable functions of position, but
one could use functions of momentum. Another commonly used representation is in
terms of the eigenstates of an operator with discrete spectrum, say the Hamiltonian
of the harmonic oscillator. In this case the basis of the Hilbert space is countable, and
the operators can be seen as infinite matrices. We will see later on in Example 6.6
how the GNS construction applies to this case.

On square integrable functions of x the operators x̂ and p̂ are represented as

x̂ψ(x) = xψ(x), p̂ψ(x) = − i h̄∂xψ(x). (6.43)

The association of an operator to other functions of x and p is, however, ambiguous,
and moreover it is preferable to deal with bounded operators. Weyl [15] has given a
well-defined map from functions into operators, this procedure was implicitly used
in Appendix 1.9. We first define the operator (sometimes called the quantizer [5] in
this context)

Ŵ (η ,ξ ) = e
i
h̄ (ξ ·p̂+η ·x̂). (6.44)

The correspondence is then defined as

f (p,x) 
−→ Ω̂( f )(p̂, x̂) =
∫

dξdη f̃ (ξ ,η)Ŵ (ξ ,η) , (6.45)

where

f̃ (ξ ,η) =
∫

dxd p
2π

f (p,x)e− i
h̄ (ηx+ξ p) (6.46)

is the Fourier transform of f . If we were to forget the hat on p and x in (6.44),
the expression (6.45) would look just like the expression which Fourier transforms
back f̃ to the original function. Because of the operatorial nature of Ŵ , instead it
associates an operator to functions, with the property that real functions are mapped
into hermitian operators. The inverse of the Weyl map is called the Wigner map [16]:
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Ω−1(F̂)(p,x) =
∫

dηdξ
(2π)2h̄

e− i
h̄ (ηx+ξ p)TrF̂ Ŵ (ξ ,η). (6.47)

The Weyl map gives a precise prescription associating an operator to any function
for which a Fourier transform can be defined. It has the characteristic of mapping
real functions into hermitian operators and is a vector space isomorphism between
L2 functions on phase space and Hilbert–Schmidt operators [17–19].

The correspondence between functions and operators implicitly defines a new
noncommutative product [20, 21] among functions on phase spaces defined as fol-
lows:

f �g =Ω−1(Ω̂( f )Ω̂(g)) . (6.48)

This product called the Grönewold–Moyal, or simply Moyal, or �-product, is as-
sociative but noncommutative and it reproduces the standard quantum mechanical
commutation relation:

x� p− p� x = i h̄. (6.49)

There are several integral expressions (see for example [22, 23]) for the �-product,
with a fairly large domain of definition. In the context of this book it is useful to see
the �-product as a twisted convolution of Fourier transforms. Given two functions f
and g the Fourier transform of their product is

(̃ f �g)(ξ ,η) =
∫

dξ ′dη ′

2π
e i h̄(ξη ′−ξ ′η) f̃ (ξ ′,η ′)g̃(ξ −ξ ′,η−η ′) . (6.50)

Without the exponential this expression would just give the commutative convo-
lution product among Fourier components. The exponential breaks the symmetry
between f and g and gives noncommutativity.

Another very common form of the product is the differential expansion of the
product (6.50) given by

( f �g)(u) := f (u) exp

(
i h̄
2
←−∂iΛ i j−→∂ j

)
g(u) , (6.51)

where the notation
←−∂i (resp.

−→∂i ) means that the partial derivative acts on the left
(resp. right). This expression is an asymptotic expansion of the integral one [24],
obtained by expanding the exponential in (6.50). The product can be seen as acting
with the twist operator

F = e
i h̄
2 (∂x⊗∂p−∂p⊗∂x) (6.52)

on the tensor product of the two functions, before evaluating them on the same
point. In this sense, as is discussed at length in this book, the �-product is a twisted
product.

Expressions (6.51) and (6.50) have different domains of definition, but they are
both well defined if both function are Schwarzian functions, and in this case their
product is still Schwarzian. The star product (both in the differential and integral
forms) is also well defined on polynomials, which however do not belong to the C∗-
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algebra, and in fact they are not mapped into bounded operators. It is nevertheless
useful to consider them, which is what we do when we talk of the commutation
relations (6.42). If one is not interested in the presence of the norm, then one can
define the algebra of formal series in the generators x and p. This is basically the
construction described in Sect. 1.2.

The asymptotic form (6.50) is convenient because it enables to write immediately
the �-product of two functions as a series expansion in the small parameter h̄. The
first term of the expansion is the ordinary commutative product. In this sense this
product is a deformation [25] of the usual pointwise product. The second term in
the expansion is proportional to the Poisson bracket:

f �g = f g+ i h̄{ f ,g}+O(h̄2) . (6.53)

Considering less trivial phase spaces, starting from the work of [26, 27] a whole
theory of deformed products with the property that to first order in h̄ they reproduce
the Poisson bracket has been developed, under the name of �-quantization or (for-
mal) deformation quantization. This culminated in the work of Kontsevich [28] who
proved that it is always possible, given a manifold with a Poisson bracket, to con-
struct a �-product that quantizes the Poisson structure. That is, such that the product
is associative and whose commutator, to first order in the deformation parameter, is
proportional to the Poisson bracket.

Consider the Heisenberg equation of motion for observables which do not depend
explicitly on time:

d f̂
dt

= i
[ f̂ , Ĥ]

h̄
(6.54)

and the classical analogous in terms of the Poisson bracket

d f
dt

= { f ,H}, (6.55)

where f and H are observable and the Hamiltonian for classical system, respec-
tively, and f̂ , Ĥ the operators obtained with the Weyl correspondence. In terms of a
deformed classical mechanics we can define

d f
dt

=
1
i h̄

( f �H −H � f ) = { f ,H}+O(h̄2). (6.56)

Here we can see that the two evolutions coincide in the limit h̄ → 0. In this sense
classical mechanics can be seen as the classical limit of quantum mechanics. The
�-commutator is called the Moyal bracket [21] and plays the role of a quantum
mechanics Poisson bracket.

Example 6.5.
The algebra of functions on the (p,x) plane with the �-product is isomorphic to the
algebra of operators generated by p̂ and x̂. For further illustration in this example,
we see how the algebra with the �-product as well can be seen as a (infinite) matrix
algebra.
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Consider first the function3:

ϕ0 = 2e− p2+x2
2 . (6.57)

This function is a projector, that is,

ϕ0 �ϕ0 = ϕ0 . (6.58)

It is in fact the first of a whole class of projectors, as it is the function obtained
applying the Wigner map to the projection operator corresponding to the ground
state of the harmonic oscillator

ϕ0 =Ω−1(|0〉〈0|). (6.59)

Consider then the functions

a =
1√
2
(x+ i p) ā =

1√
2
(x− i p) . (6.60)

These two operators are easily recognized as the functions corresponding (with the
Wigner map) to the usual creation and annihilation operators. They have the prop-
erty that for a generic function f

a� f = a f +
∂ f
∂ ā

f �a = a f − ∂ f
∂ ā

, (6.61)

and analogous relations involving ā.
Define now the functions [22]

ϕnm =
1√

2n+mm!n!
ān �ϕ0 �am . (6.62)

These are the functions corresponding via the Wigner map to the operators |m〉〈n|
and have the property

ϕmn �ϕkl = δnkϕml , (6.63)

which is easily proven using (6.61) and (6.58).
The ϕmn are a basis for the functions of p and q, or alternatively of a and ā:

f =
∞

∑
m,n=0

fmnϕmn, (6.64)

relation (6.63) ensures that

( f �g)mn =
∞

∑
p=0

fmpgpn. (6.65)

3 For simplicity set h̄ = 1.
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In this sense the deformed algebra can be seen as multiplication of (infinite) matri-
ces. �

Example 6.6.
Example 6.3 can be immediately generalized to arbitrary size matrices and even to
infinite matrices (operators on �2(Z)). In fact using the matrix basis described in
Example 6.5 for functions f = ∑mn fmnϕmn the same construction can be applied
using the state

φ( f ) = f00 =
∫

d pdx ϕ0 � f �ϕ0 . (6.66)

The ideal Nφ is given by functions with f0m = 0 and we can identify the Hilbert
space with functions of the kind

ψ =∑
n
ψnϕn0 . (6.67)

Upon recalling that ϕn0 = 1√
2nn!

ān �ϕ0 one recognizes the usual countable basis of

the Hilbert space L2(R) composed of Hermite polynomials multiplied by a gaussian
function. �

Example 6.7.
The noncommutative torus is a compact version of the algebra described in this
section. It can be seen as a deformation of the algebra of functions on the torus in
the sense of Moyal. Given a function on the torus with Fourier expansion

f (x) =
∞

∑
n1,n2=−∞

fn1n2 e in1x1 e in2x2 , (6.68)

we associate to it the operator

f̂ =
∞

∑
n1,n2=−∞

fn1n2Û
n1
1 Ûn2

2 , (6.69)

where the operators Ui act on the Hilbert space of infinite sequences of complex
numbers c = {cn} as

(
Û1c
)

n = e inθ cn ;
(
Û2c
)

n = cn+1. (6.70)

It is not difficult to see that the Û’s satisfy the relation (6.34) and the �-product
defined as in (6.48) can also be expressed as

( f �g)(x) = eiε i jθ∂ξi
∂η j f (ξ )g(η)

∣∣∣
ξ=η=x

. (6.71)

�
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6.4 Final remarks

Noncommutative geometry started from the need to describe quantum mechanics,
and it has led to see it as a deformation of classical mechanics. The freedom from
the need to describe spaces as sets of points opened a whole new quantum world,
needed on physical grounds to describe atomic physics. This deformation was the
main stimulus for large body of mathematical literature, which not only helped to
clarify and develop quantum mechanics, but also led to the construction of several
other “noncommutative geometries”, together with their symmetries. The catalog
of noncommutative spaces is already large, and still growing, and noncommutative
geometry has proven to be an useful tool also to understand standard, commutative
geometries.

Historically quantum mechanics started from a “cutoff”, imposed by Planck to
avoid the ultraviolet divergences in the calculation of the black body spectrum. It is
natural to think that the tools of noncommutative geometry may help the solution of
the other ultraviolet divergences that we are encountering in the search for a theory
that unifies quantum mechanics and gravity. Hence the study of field theories on
noncommutative spaces, which is the main object of this book.
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Chapter 7
Quantum Groups, Quantum Lie Algebras
and Twists

Paolo Aschieri

In this chapter, led by examples, we introduce the notions of Hopf algebra and
quantum group. We study their geometry and in particular their Lie algebra (of left
invariant vector fields). The examples of the quantum sl(2) Lie algebra and of the
quantum (twisted) Poincaré Lie algebra isoθ (3,1) are presented.

7.1 Introduction

Hopf algebras were initially considered more than half a century ago. New impor-
tant examples, named quantum groups, were studied in the 1980s [1–5]; they arose
in the study of the quantum inverse scattering method in integrable systems [6].
Quantum groups can be seen as symmetry groups of noncommutative spaces, this is
one reason they have been investigated in physics and mathematical physics (non-
commutative spaces arise as quantization of commutative ones). The emergence of
gauge theories on noncommutative spaces in open string theory in the presence of
a NS 2-form background [7] has further motivated the study of noncommutative
spaces and of their symmetry properties.

We here introduce the basic concepts of quantum group and of its Lie algebra
of infinitesimal transformations. We pedagogically stress the connection with the
classical (commutative) case and we treat two main examples, the quantum sl(2)
Lie algebra and the quantum Poincaré Lie algebra.

Section 7.2 shows how commutative Hopf algebras emerge from groups. The
quantum group SLq(2) is then presented and its corresponding universal enveloping
algebra Uq(sl(2)) discussed. The relation between SLq(2) and Uq(sl(2)) is stud-
ied in Sect. 7.5. The quantum sl(2) Lie algebra, i.e., the algebra of infinitesimal
transformations, is then studied in Sect. 7.6. Similarly the geometry of Hopf alge-
bras obtained from (abelian) twists is studied via the example of the Poincaré Lie

Aschieri, P.: Quantum Groups, Quantum Lie Algebras and Twists. Lect. Notes Phys. 774, 111–132 (2009)
DOI 10.1007/978-3-540-89793-4 7 c© Springer-Verlag Berlin Heidelberg 2009
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algebra. We do not consider here the C∗-algebras aspect of these noncommutative
geometries [8].

In the appendix for reference we review some basic algebra notions and define
Hopf algebras diagrammatically. We also show that in the deformation quantization
context the twists we use in this book are well defined.

One aim of this chapter is to concisely introduce and relate all three aspects of
quantum groups:

• deformed algebra of functions [3, 4],
• deformed universal enveloping algebra [1–3],
• quantum Lie algebra [9].

Quantum Lie algebras encode the construction of the (bicovariant) differential cal-
culus and geometry, most relevant for physical applications. A helpful review for
the first and second aspects is [10], for quantum Lie algebras we refer to [11] and
[12]. The (abelian) twist case, that is an interesting subclass, can be found in [13]
and is treated also in the next chapter.

7.2 Hopf algebras from groups

Let us begin with two examples motivating the notion of Hopf algebra. Let G be a
finite group, and A = Fun(G) be the set of functions from G to complex numbers
C. A = Fun(G) is an algebra over C with the usual sum and product ( f + h)(g) =
f (g)+h(g), ( f ·h) = f (g)h(g), (λ f )(g) = λ f (g), for f ,h∈Fun(G), g∈G, λ ∈C.
The unit of this algebra is I, defined by I(g) = 1, ∀g ∈ G. Using the group structure
of G (multiplication map, existence of unit element, and inverse element), we can
introduce on Fun(G) three other linear maps, the coproduct (or comultiplication) Δ ,
the counit ε , and the antipode (or coinverse) S:

Δ( f )(g,g′) ≡ f (gg′), Δ : Fun(G) → Fun(G)⊗Fun(G), (7.1)

ε( f ) ≡ f (1G), ε : Fun(G) → C, (7.2)

(S f )(g) ≡ f (g−1), S : Fun(G) → Fun(G), (7.3)

where 1G is the unit of G.
In general a coproduct can be expanded on Fun(G)⊗Fun(G) as

Δ( f ) =∑
i

f i
1 ⊗ f i

2 ≡ f1 ⊗ f2, (7.4)

where f i
1, f i

2 ∈ A = Fun(G) and f1 ⊗ f2 is a shorthand notation we will often use in
the sequel. Thus we have

Δ( f )(g,g′) = ( f1 ⊗ f2)(g,g′) = f1(g) f2(g′) = f (gg′). (7.5)
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It is not difficult to verify the following properties of the costructures:

(id ⊗Δ)Δ = (Δ ⊗ id)Δ (coassociativity of Δ), (7.6)

(id ⊗ ε)Δ(a) = (ε⊗ id)Δ(a) = a, (7.7)

μ(S⊗ id)Δ(a) = μ(id ⊗S)Δ(a) = ε(a)I, (7.8)

and

Δ(ab) = Δ(a)Δ(b), Δ(I) = I ⊗ I, (7.9)

ε(ab) = ε(a)ε(b), ε(I) = 1, (7.10)

S(ab) = S(b)S(a), S(I) = I, (7.11)

where a,b ∈ A = Fun(G) and μ is the multiplication map μ(a⊗b)≡ ab. The prod-
uct in Δ(a)Δ(b) is the product in A⊗A: (a⊗b)(c⊗d) = ac⊗bd.

For example, the coassociativity property (7.6), (id ⊗Δ)Δ( f ) = (Δ ⊗ id)Δ( f )
reads f1 ⊗ ( f2)1 ⊗ ( f2)2 = ( f1)1 ⊗ ( f1)2 ⊗ f2, for all f ∈ A. This equality is easily
seen to hold by applying it on the generic element (g,g′,g′′) of G×G×G and then
by using associativity of the product in G.

An algebra A (not necessarily commutative) endowed with the homomorphisms
Δ : A → A⊗A and ε : A → C, and the linear and antimultiplicative map S : A → A
satisfying the properties (7.6)–(7.11) is a Hopf algebra. Thus Fun(G) is a Hopf
algebra, it encodes the information on the group structure of G.

As a second example consider now the case where G is a group of matrices,
a subgroup of GL given by matrices T a

b that satisfy some algebraic relation (for
example, orthogonality conditions). We then define A =Fun(G) to be the algebra of
polynomials in the matrix elements T a

b of the defining representation of G and in
detT−1; i.e., the algebra is generated by T a

b and detT−1.

Using the elements T a
b we can write an explicit formula for the expansion (7.4)

or (7.5): indeed (7.1) becomes

Δ(T a
b)(g,g′) = T a

b(gg′) = T a
c(g)T c

b(g
′), (7.12)

since T is a matrix representation of G. Therefore,

Δ(T a
b) = T a

c ⊗T c
b. (7.13)

Moreover, using (7.2) and (7.3), one finds

ε(T a
b) = δ a

b , (7.14)

S(T a
b) = T−1a

b. (7.15)
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Thus the algebra A = Fun(G) of polynomials in the elements T a
b and detT−1 is a

Hopf algebra with costructures defined by (7.13)–(7.15) and (7.9)–(7.11).

The two examples presented concern commutative Hopf algebras. In the first
example the information on the group G is equivalent to that on the Hopf algebra
A = Fun(G) . We constructed A from G. In order to recover G from A notice that
every element g ∈ G can be seen as a map from A to C defined by f → f (g). This
map is multiplicative because f h(g) = f (g)h(g). The set G can be obtained from A
as the set of all nonzero multiplicative linear maps from A to C (the set of characters
of A).

Concerning the group structure of G, the product is recovered from the coproduct
in A via (7.5), i.e., gg′ is the new character that associates to any f ∈ A the complex
number f1(g) f2(g′). The unit of G is the character ε; the inverse g−1 is defined via
the antipode of A.

In the second example, in order to recover the topology of G, we would need
a C∗-algebra completion of the algebra A = Fun(G) of polynomial functions. This
can be achieved if G is compact (see for example [14]); then, up to these topological
(C∗-algebra) aspects, the information concerning a matrix group G can be encoded
in its commutative Hopf algebra A = Fun(G). Also in the case that G is locally
compact there is a notion of Hopf C∗-algebra that encodes the topology and group
structure of G [8, 15].

In the spirit of noncommutative geometry we now consider noncommutative de-
formations Funq(G) of the algebra Fun(G). The space of points G does not exist
anymore, by noncommutative or quantum space Gq is meant the noncommutative
algebra Funq(G). We consider this algebra as an “algebra of functions on the de-
formed space Gq”. Since G is a group then Fun(G) is a Hopf algebra; the noncom-
mutative Hopf algebra obtained by deformation of Fun(G) is then usually called
Quantum group. The term quantum stems for the fact that the deformation is ob-
tained by quantizing a Poisson (symplectic) structure of the algebra Fun(G) [1, 2].

7.3 Quantum groups and SLq(2)

Following [5] we consider quantum groups defined as the associative algebras A
freely generated by noncommuting matrix entries T a

b satisfying the relation

Rab
e f T e

cT f
d = T b

f T a
eRe f

cd (7.16)

and some other conditions depending on which classical group we are deforming
(see later). The matrix R controls the noncommutativity of the T a

b, and its elements
depend continuously on a (in general complex) parameter q, or even a set of param-
eters. For q → 1, the so-called “classical limit”, we have
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Rab
cd

q→1−→ δ a
c δ b

d , (7.17)

i.e., the matrix entries T a
b commute for q = 1, and one recovers the ordinary Fun(G).

The R-matrices for the quantum group deformation of the simple Lie groups of the
A,B,C,D series were given in [5].

The associativity of A leads to a consistency condition on the R-matrix, the Yang–
Baxter equation:

Ra1b1
a2b2

Ra2c1
a3c2

Rb2c2
b3c3

= Rb1c1
b2c2

Ra1c2
a2c3

Ra2b2
a3b3

. (7.18)

For simplicity we rewrite the “RTT” equation (7.16) and the Yang–Baxter equation
as

R12T1T2 = T2T1R12, (7.19)

R12R13R23 = R23R13R12, (7.20)

where in Eq. (7.19) R12 = R, T1 = T ⊗ 1, T2 = 1⊗T (here 1 denotes the diagonal
matrix with the unit element I ∈ A on the diagonal), while in Eq. (7.20) R12 =
R⊗ 1, R23 = 1⊗R, and writing R = Rα ⊗Rα (sum over α understood), we have
R13 = Rα ⊗ 1⊗Rα . Thus, for example, the entries of the matrix product R12T1 are
(R12T1)ab

cd = Rab
e f T e

cδ
f
d = Rab

edT e
c; we see that the repeated subscripts (like 1 in this

example) mean matrix multiplication.
The Yang–Baxter equation (7.20) is a condition sufficient for the consistency of

the RTT equation (7.19). Indeed the product of three distinct elements T a
b, T c

d , and
T e

f , indicated by T1T2T3, can be reordered as T3T2T1 via two different paths

T1T2T3
↗
↘

T1T3T2 → T3T1T2

T2T1T3 → T2T3T1

↘
↗T3T2T1 (7.21)

by repeated use of the RTT equation. The relation (7.20) ensures that the two paths
lead to the same result.

The algebra A (“the quantum group”) is a noncommutative Hopf algebra whose
costructures are the same as those defined for the commutative Hopf algebra Fun(G)
of the previous section, Eqs. (7.13)–(7.15), (7.9)–(7.11).

Note 7.1 Define R̂ab
cd = Rba

cd . Then the Yang–Baxter equation becomes the braid
relation

R̂23R̂12R̂23 = R̂12R̂23R̂12 . (7.22)

If R̂ satisfies R̂2 = id we have that R̂ is a representation of the permutation group. In
the more general case R̂ is a representation of the braid group. The R̂-matrix can be
used to construct invariants of knots [16] (see also [17, 18]).

Let us give the example of the quantum group SLq(2)≡Funq(SL(2)), the algebra
freely generated by the elements α,β ,γ , and δ of the 2×2 matrix
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T a
b =
(
α β
γ δ

)
(7.23)

satisfying the commutations

αβ = qβα, αγ = qγα, βδ = qδβ , γδ = qδγ
βγ = γβ , αδ −δα = (q−q−1)βγ, q ∈ C (7.24)

and
detqT ≡ αδ −qβγ = I. (7.25)

The commutations (7.24) can be obtained from (7.16) via the R-matrix

Rab
cd =

⎛
⎜⎜⎝

q 0 0 0
0 1 0 0
0 q−q−1 1 0
0 0 0 q

⎞
⎟⎟⎠ , (7.26)

where the rows and columns are numbered in the order 11, 12, 21, 22.
It is easy to verify that the “quantum determinant” defined in (7.25) commutes

with α,β ,γ , and δ , so that the requirement detqT = I is consistent. The matrix
inverse of T a

b is

T−1a
b = (detqT )−1

(
δ −q−1β

−qγ α

)
. (7.27)

The coproduct, counit, and coinverse of α,β ,γ , and δ are determined via formu-
las (7.13)–(7.15) to be

Δ(α)= α⊗α+β ⊗ γ, Δ(β ) = α⊗β +β ⊗δ ,

Δ(γ) = γ⊗α+δ ⊗ γ, Δ(δ ) = γ⊗β +δ ⊗δ , (7.28)

ε(α) = ε(δ ) = 1, ε(β ) = ε(γ) = 0, (7.29)

S(α) = δ , S(β ) = −q−1β , S(γ) = −qγ, S(δ ) = α. (7.30)

Note 7.2 The commutations (7.24) are compatible with the coproduct Δ , in the
sense that Δ(αβ ) = qΔ(βα) and so on. In general we must have

Δ(R12T1T2) = Δ(T2T1R12), (7.31)

which is easily verified using Δ(R12T1T2) = R12Δ(T1)Δ(T2) and Δ(T1) = T1 ⊗T1.
This is equivalent to proving that the matrix elements of the matrix product T1T ′

1,
where T ′ is a matrix [satisfying (7.16)] whose elements commute with those of T a

b,
still obey the commutations (7.19).

Note 7.3 Δ(detqT ) = detqT ⊗detqT so that the coproduct property Δ(I) = I ⊗ I is
compatible with detqT = I.
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Note 7.4 The condition (7.25) can be relaxed. Then we have to include the central
element ζ = (detqT )−1, so as to be able to define the inverse of the q-matrix T a

b as in
(7.27) and the coinverse of the element T a

b as in (7.15). The q-group is then GLq(2).
The reader can deduce the costructures on ζ : Δ(ζ ) = ζ ⊗ ζ , ε(ζ ) = 1, S(ζ ) =
detqT .

7.4 Universal enveloping algebras and Uq(sl(2))

Another example of Hopf algebra is given by any ordinary Lie algebra g, or more
precisely by the universal enveloping algebra U(g) of a Lie algebra g, i.e., the al-
gebra, with unit I, of polynomials in the generators χi modulo the commutation
relations

[χi,χ j] = C k
i j χk . (7.32)

Here we define the costructures on the generators as

Δ(χi) = χi ⊗ I + I ⊗χi Δ(I) = I ⊗ I (7.33)

ε(χi) = 0 ε(I) = 1 (7.34)

S(χi) = −χi S(I) = I (7.35)

and extend them to all U(g) by requiring Δ and ε to be linear and multiplicative,
Δ(χχ ′) = Δ(χ)Δ(χ ′), ε(χχ ′) = ε(χ)ε(χ ′), while S is linear and antimultiplica-
tive. In order to show that the construction of the Hopf algebra U(g) is well given,
we have to check that the maps Δ ,ε,S are well defined. We give the proof for the
coproduct. Since [χ,χ ′] is linear in the generators we have

Δ [χ,χ ′] = [χ,χ ′]⊗ I + I ⊗ [χ,χ ′] , (7.36)

on the other hand, using that Δ is multiplicative we have

Δ [χ,χ ′] = Δ(χ)Δ(χ ′)−Δ(χ ′)Δ(χ). (7.37)

It is easy to see that these two expressions coincide.
The Hopf algebra U(g) is noncommutative but it is cocommutative, i.e., for all

ζ ∈U(g), ζ1 ⊗ζ2 = ζ2 ⊗ζ1, where we used the notation Δ(ζ ) = ζ1 ⊗ζ2. We have
discussed deformations of commutative Hopf algebras, of the kind A = Fun(G), and
we will see that these are related to deformations of cocommutative Hopf algebras
of the kind U(g) where g is the Lie algebra of G.

We here introduce the basic example of deformed universal enveloping algebra:
Uq(sl(2)) [1–3], which is a deformation of the usual enveloping algebra of sl(2),

[X+,X−] = H , [H,X±] = 2X± . (7.38)
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The Hopf algebra Uq(sl(2)) is generated by the elements K+, K−, X+, and X− and
the unit element I, that satisfy the relations,

[X+,X−] =
K2

+ −K2
−

q−q−1 , (7.39)

K+X±K− = q±1X± , (7.40)

K+K− = K−K+ = I . (7.41)

The parameter q that appears in the right-hand side of the first two equations is
a complex number. It can be checked that the algebra Uq(sl(2)) becomes a Hopf
algebra by defining the following costructures:

Δ(X±) = X±⊗K+ +K−⊗X± , Δ(K±) = K±⊗K±, (7.42)

ε(X±) = 0 , ε(K±) = 1, (7.43)

S(X±) = −q±1X± , S(K±) = K∓. (7.44)

If we set q = eh and K+ = ehH/2, then we see that in the limit q → 1 we recover the
undeformed U(sl(2)) Hopf algebra.

The Hopf algebra Uq(sl(2)) is not cocommutative; however, the noncocommu-
tativity is under control. If we consider h a formal parameter and allow in Uq(sl(2))
formal power series in h (as we do when we consider ehH/2) then there exists an
element R of Uq(sl(2))⊗Uq(sl(2)), called universal R-matrix, that governs the
noncocommutativity of the coproduct Δ ,

σ Δ(ζ ) = RΔ(ζ )R−1 , (7.45)

where σ is the flip operation, σ(ζ ⊗ξ ) = ξ ⊗ζ . The element R explicitly reads

R = q
H⊗H

2

∞

∑
n=0

(1−q−2)n

[n]!
(qH/2X+ ⊗q−H/2X−)nqn(n−1)/2, (7.46)

where [n] ≡ qn−q−n

q−q−1 , and [n]! = [n][n−1] . . .1.

The universal R-matrix has two further properties

(Δ ⊗ id)R = R13R23, (id ⊗Δ)R = R13R12, (7.47)

where we used the notation R12 = R ⊗ I, R23 = I ⊗R, and R13 = Rα ⊗ I ⊗Rα ,
where R = Rα ⊗Rα (sum over α understood).

A Hopf algebra with an invertible R-matrix that satisfies (7.45) and (7.47) is
called a quasitriangular Hopf algebra. If in addition R−1 = R21 then we have a
triangular Hopf algebra. From the invertibility of R and (7.45) and (7.47) it can be
shown that R satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12 . (7.48)
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7.5 Duality

Consider a finite-dimensional Hopf algebra A, the vector space A′ dual to A is also a
Hopf algebra with the following product, unit, and costructures [we use the notation
ψ(a) = 〈ψ,a〉 in order to stress the duality between A′ and A]: ∀ψ,φ ∈ A′, ∀a,b ∈ A

〈ψφ ,a〉 = 〈ψ⊗φ ,Δa〉 , 〈I,a〉 = ε(a), (7.49)

〈Δ(ψ),a⊗b〉 = 〈ψ,ab〉 , ε(ψ) = 〈ψ, I〉, (7.50)

〈S(ψ),a〉 = 〈ψ,S(a)〉, (7.51)

where 〈ψ ⊗ φ , a⊗ b〉 ≡ 〈ψ,a〉〈φ ,b〉. Obviously (A′)′ = A and A and A′ are dual
Hopf algebras.

Consider for example the group algebra C[G]. As vector space it is the linear
span over C of the group elements g ∈ G, each element being by definition linearly
independent. The product is the product in G extended by linearity to all C[G].
The group algebra C[G] is a Hopf algebra, the coproduct, counit, and antipode are
defined for all g ∈ G as

Δ(g) = g⊗g , ε(g) = 1 , S(g) = g−1 (7.52)

and extended as linear maps to all of C[G]. When G is a finite group then C[G] is
a finite-dimensional Hopf algebra; its dual is Fun(G). Indeed any complex-valued
function f ∈ Fun(G) is extended by linearity to a complex-valued function on C[G].
Relations (7.49)–(7.51) are easily seen to hold for the group elements of C[G] and
extend by linearity to all C[G]. In the case that G is a finite abelian group then this
duality encompasses Pontryagin duality between G and the dual group Ĝ of one-
dimensional representations of G (see for example [21]).

In the infinite-dimensional case the definition of duality between Hopf algebras
is more delicate because the space of linear maps A′ does not naturally inherit a
coproduct, indeed the space A′ ⊗A′ (of finite sums ∑n

i=1ψi ⊗φi) does not coincide
anymore with (A⊗A)′. We therefore use the notion of pairing: two Hopf algebras
A and U are paired if there exists a bilinear map 〈 , 〉 : U ⊗A → C satisfying (7.49)
and (7.50), (then (7.51) can be shown to follow as well). We implicitly also always
assume that the pairing is non-degenerate, i.e.,

∀ ψ ∈U 〈ψ,a〉 = 0 ⇒ a = 0 (7.53)

and
∀ a ∈ A 〈ψ,a〉 = 0 ⇒ ψ = 0 . (7.54)

Condition (7.53) states that U separates the points (elements) of A and vice versa
for (7.54). If U and A are finite dimensional then (7.53) and (7.54) are equivalent
to A′ = U ; indeed (7.53) induces the injection a → 〈 ,a〉 of A in U ′, similarly, by
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(7.54) U ⊆ A′ and therefore A′ = U . Frequently in the literature Hopf algebras that
are paired are called dual. We follow this slight abuse of language.

The Hopf algebras Fun(G) and U(g) described in Sects. 7.3 and 7.4 are paired
if g is the Lie algebra of G. Indeed we realize g as left invariant vector fields on the
group manifold. Then the pairing is defined by

∀t ∈ g,∀ f ∈ Fun(G), 〈t, f 〉 = t( f )|1G
,

where 1G is the unit of G, and more in general by1

∀ tt ′...t ′′ ∈U(g),∀ f ∈ Fun(G), 〈tt ′...t ′′, f 〉 = t(t ′...(t ′′( f )))|1G
.

The pairing between the Hopf algebras Fun(SL(2)) and U(sl(2)) holds also in
the deformed case, so that the quantum group SLq(2) is dual to Uq(sl(2)). In order to
show this duality we introduce a subalgebra (with generators L±) of the algebra of
linear maps from Funq(SL(2)) to C. We then see that this subalgebra has a natural
Hopf algebra structure dual to SLq(2) = Funq(SL(2)). Finally we see in formula
(7.75) that this subalgebra is just Uq(sl(2)). This duality is important because it
allows to consider the elements of Uq(sl(2)) as (left invariant) differential operators
on SL2(2). This is the first step for the construction of a differential calculus on the
quantum group SLq(2).

The L± functionals
The linear functionals L±a

b are defined by their value on the elements T a
b:

L±a
b(T

c
d) = 〈L±a

b,T
c
d〉 = R±ac

bd , (7.55)

where
(R+)ac

bd ≡ q−1/2Rca
db, (7.56)

(R−)ac
bd ≡ q1/2(R−1)ac

bd . (7.57)

The inverse matrix R−1 is defined by

1 In order to see that relations (7.49), (7.50) hold, we recall that t is left invariant if T Lg(t|1G
) = t|g,

where T Lg is the tangent map induced by the left multiplication of the group on itself: Lgg′ = gg′.
We then have

t( f )|g =
(

T Lgt|1G

)
( f ) = t[ f (gg̃)]|g̃=1G

= t[ f1(g) f2(g̃)]|g̃=1G
= f1(g) t( f2)|1G

and therefore
〈t̃ t, f 〉 = t̃(t( f ))|1G

= t̃ f1|1G
t f2|1G

= 〈t̃ ⊗ t,Δ f 〉 ,

and
〈t, f h〉 = t( f )|1G

h|1G
+ f |1G

t(h)|1G
= 〈Δ(t), f ⊗h〉 .
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R−1ab
cdRcd

e f ≡ δ a
e δ b

f ≡ Rab
cdR−1cd

e f . (7.58)

To extend the definition (7.55) to the whole algebra A we set

L±a
b(ab) = L±a

g(a)L±g
b(b), ∀a,b ∈ A, (7.59)

so that, for example,
L±a

b(T
c
dT e

f ) = R±ac
gdR±ge

b f . (7.60)

In general, using the compact notation introduced in Sect. 2,

L±
1 (T2T3...Tn) = R±

12R±
13...R

±
1n. (7.61)

As is easily seen from (7.60), the Yang–Baxter equation (7.20) is a necessary
and sufficient condition for the compatibility of (7.55) and (7.59) with the RT T -
relations: L±

1 (R23T2T3 −T3T2R23) = 0.

Finally, the value of L± on the unit I is defined by

L±a
b(I) = δ a

b . (7.62)

It is not difficult to find the commutations between L±a
b and L±c

d :

R12L±
2 L±

1 = L±
1 L±

2 R12, (7.63)

R12L+
2 L−

1 = L−
1 L+

2 R12, (7.64)

where the product L±
2 L±

1 is by definition obtained by duality from the coproduct in
A, for all a ∈ A,

L±
2 L±

1 (a) ≡ (L±
2 ⊗L±

1 )Δ(a) .

For example, consider

R12(L+
2 L+

1 )(T3) = R12(L+
2 ⊗L+

1 )Δ(T3) = R12(L+
2 ⊗L+

1 )(T3 ⊗T3) = q R12R32R31

(7.65)
and

L+
1 L+

2 (T3)R12 = q R31R32R12, (7.66)

so that Eq. (7.63) is proven for L+ by virtue of the Yang–Baxter equation (7.18),
where the indices have been renamed 2 → 1,3 → 2,1 → 3. Similarly, one proves the
remaining “RLL” relations.

Note 7.5 As mentioned in [5], L+ is upper triangular, L− is lower triangular (this
is due to the upper and lower triangularity of R+ and R−, respectively). From (7.63)
and (7.64) we have

L±a
aL±b

b = L±b
bL±b

b ; L+a
aL−b

b = L−b
bL+a

a = ε . (7.67)

We also have
L±1

1L±2
2 = ε . (7.68)
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The algebra of polynomials in the L± functionals becomes a Hopf algebra paired
to SLq(2) by defining the costructures via the duality (7.55):

Δ(L±a
b)(T

c
d ⊗T e

f ) ≡ L±a
b(T

c
dT e

f ) = L±a
g(T

c
d)L

±g
b(T

e
f ), (7.69)

ε(L±a
b) ≡ L±a

b(I), (7.70)

S(L±a
b)(T

c
d) ≡ L±a

b(S(T c
d)), (7.71)

cf. (7.50), (7.51), so that

Δ(L±a
b) = L±a

g ⊗L±g
b, (7.72)

ε(L±a
b) = δ a

b , (7.73)

S(L±a
b) = L±a

b ◦S . (7.74)

This Hopf algebra is Uq(sl(2)) because it can be checked that relations (7.63),
(7.64), (7.67), and (7.68) fully characterize the L± functionals, so that the algebra of
polynomials in the symbols L±a

b that satisfy the relations (7.63), (7.64), (7.67), and
(7.68) is isomorphic to the algebra generated by the L± functionals on Uq(sl(2)).
An explicit relation between the L± matrices and the generators X± and K± of
Uq(sl(2)) introduced in the previous section is obtained by comparing the “RLL”
commutation relations with the Uq(sl(2)) Lie algebra relations; we obtain

L+ =
(

K− q−1/2(q−q−1)X+
0 K+

)
, L− =

(
K+ 0

q1/2(q−1 −q)X− K−

)
. (7.75)

7.6 Quantum Lie algebra

We now turn our attention to the issue of determining the Lie algebra of the quantum
group SLq(2), or equivalently the quantum Lie algebra of the universal enveloping
algebra Uq(sl(2)).

In the undeformed case the Lie algebra of a universal enveloping algebra U (for
example, U(sl(2))) is the unique linear subspace g of U of primitive elements, i.e.,
of elements χ that have coproduct (I denotes the unit in the algebra):

Δ(χ) = χ⊗ I + I ⊗χ . (7.76)

Of course g generates U and g is closed under the usual commutator bracket [ , ],

[u,v] = uu− vu ∈ g for all u,v ∈ g . (7.77)

The geometric meaning of the bracket [u,v] is that it is the adjoint action of g on g,
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[u,v] = adu v, (7.78)

adu v := u1vS(u2), (7.79)

where we have used the notation Δ(u) = ∑α u1α ⊗ u2α = u1 ⊗ u2, so that a sum
over α is understood. Recalling that Δ(u) = u⊗ I + I ⊗u and that S(u) = −u, from
(7.79) we immediately obtain (7.78). In other words, the commutator [u,v] is the Lie
derivative of the left invariant vector field u on the left invariant vector field v. More
in general the adjoint action of U on U is given by

adξ ζ = ξ1ζS(ξ2) , (7.80)

where we used the notation (sum understood) Δ(ξ ) = ξ1 ⊗ξ2 .

In the deformed case the coproduct is no more cocommutative and we cannot
identify the Lie algebra of a deformed universal enveloping algebra Uq with the
primitive elements of Uq, they are too few to generate Uq. We then have to relax
this requirement. There are three natural conditions that according to [9] the q-Lie
algebra of a q-deformed universal enveloping algebra Uq has to satisfy, see [12, 19]
and [20], p. 41. It has to be a linear subspace gq of Uq such that

i) gq generates Uq , (7.81)

ii) Δ(gq) ⊂ gq ⊗ I +Uq(sl(2))q ⊗gq , (7.82)

iii) [gq,gq] ⊂ gq . (7.83)

Here now Δ is the coproduct of Uq and [ , ] denotes the q-bracket

[u,v] = adu v = u1vS(u2), (7.84)

where we have used the coproduct notation Δ(u) = u1 ⊗ u2. Property iii) is the
closure of gq under the adjoint action. Property ii) implies a minimal deformation
of the Leibniz rule.

From these conditions, that do not in general single out a unique subspace gq, it
follows that the bracket [u,v] is quadratic in u and v, that it has a deformed antisym-
metry property, and that it satisfies a deformed Jacobi identity.

In the example Uq = Uq(sl(2)) we have that a quantum sl(2) Lie algebra is
spanned by the four linearly independent elements

χc1
c2

=
1

q−q−1 [L+c1
bS(L−b

c2
)−δ c1

c2
I] . (7.85)

In the commutative limit q → 1, we have χ2
2 = −χ1

1 = H/2, χ1
2 = X+, χ2

1 = X−
and we recover the usual sl(2) Lie algebra.



124 Paolo Aschieri

The q-Lie algebra commutation relations explicitly are

χ1χ+ −χ+χ1 +(q4 −q2)χ+χ2 = q3χ+,

χ1χ−−χ−χ1 − (q2 −1)χ−χ2 = −qχ−,

χ1χ2 −χ2χ1 = 0,

χ+χ−−χ−χ+ − (1−q2)χ1χ2 +(1−q2)χ2χ2 = q(χ1 −χ2),

χ2χ+ −q2χ+χ2 = −qχ+,

χ2χ−−q−2χ−χ2 = q−1χ−,

where we used the composite index notation

a1
a2
→ i , b2

b1
→ j and i, j = 1,+,−,2 .

These q-Lie algebra relations can be compactly written [12]2

[χi,χ j] = χiχ j −Λ rs
jiχsχr , (7.86)

where Λ a2
a1

d2
d1

c1
c2

b1
b2

= S(L+b1
a1

)L−a2
b2

(T c1
d1

S(T d2
c2)). The q-Jacobi identities then

read
[χi, [χ j,χr]] = [[χi,χ j],χr]+Λ kl

ji[χl , [χk,χr]] . (7.87)

7.7 Deformation by twist and quantum Poincaré Lie algebra

In this last section, led by the example of the Poincaré Lie algebra, we review a quite
general method to deform the Hopf algebra U(g), the universal enveloping algebra
of a given Lie algebra g. It is based on a twist procedure. A twist element F is an
invertible element in U(g)⊗U(g). A main property F has to satisfy is the cocycle
condition

(F ⊗ I)(Δ ⊗ id)F = (I ⊗F )(id ⊗Δ)F . (7.88)

Consider for example the usual Poincaré Lie algebra iso(3,1):

[Pμ ,Pν ] = 0 ,

[Pρ ,Mμν ] = i(ηρμPν −ηρνPμ) , (7.89)

[Mμν ,Mρσ ] = −i(ημρMνσ −ημσMνρ −ηνρMμσ +ηνσMμρ). (7.90)

A twist element is given by

F = e
i
2 θ

μνPμ⊗Pν , (7.91)

2 Relation to the conventions of [9, 12] (here underlined): χi = −S−1χ
i
, f i

j = S−1 f i
j
.
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where θμν (despite the indices μν notation) is a real antisymmetric matrix of di-
mensionful constants (the previous deformation parameter q was a constant too).
We consider θμν fundamental physical constants, like the velocity of light c, or like
h̄. In this setting symmetries will leave θμν , c, and h̄ invariant. The inverse of F is

F = e
−i
2 θ

μνPμ⊗Pν .

This twist satisfies the cocycle condition (7.88) because the Lie algebra of momenta
is abelian (for a proof see (8.8) and (8.9)).

The Poincaré Hopf algebra UF (iso(3,1)) is a deformation of U(iso(3,1)), as
algebras UF (iso(3,1)) = U(iso(3,1)); but UF (iso(3,1)) has the new coproduct

ΔF (ξ ) = FΔ(ξ )F−1 , (7.92)

for all ξ ∈ U(iso(3,1)). The coassociativity property (7.6) for ΔF holds because
of the cocycle condition (7.88) for F (for a proof see for example [21]). In order
to write the explicit expression for ΔF (Pμ) and ΔF (Mμν), we use the Hadamard
formula

AdeX Y = eX Y e−X =
∞

∑
n=0

1
n!

[X , [X , ...[X︸ ︷︷ ︸
n

,Y ]]] =
∞

∑
n=0

(adX )n

n!
Y

and the relation [P⊗P′,M⊗1] = [P,M]⊗P′, and thus obtain [22, 23]

ΔF (Pμ) = Pμ ⊗ I + I ⊗Pμ ,

ΔF (Mμν) = Mμν ⊗ I + I ⊗Mμν (7.93)

− 1
2
θαβ

(
(ηαμPν −ηανPμ)⊗Pβ +Pα ⊗ (ηβμPν −ηβνPμ)

)
.

We have constructed the Hopf algebra UF (iso(3,1)): it is the algebra generated by
Mμν and Pμ modulo the relations (7.89) and with coproduct (7.93) and counit and
antipode that are as in the undeformed case:

ε(Pμ) = ε(Mμν) = 0, S(Pμ) = −Pμ , S(Mμν) = −Mμν . (7.94)

This algebra is a symmetry algebra of the noncommutative spacetime x̂μ x̂ν− x̂ν x̂μ =
iθμν .

In general given a Lie algebra g, and a twist F ∈ U(g)⊗U(g), formula (7.92)
defines a new coproduct that is not cocommutative. We call U(g)F the new Hopf
algebra with coproduct ΔF , counit εF = ε , and antipode SF that is a deformation
of S [24, 25].3 By definition as algebra U(g)F equals U(g), only the costructures
are deformed.

3 Explicitly, if we write F = fα⊗ fα (sum over α understood) and define the element χ = fαS(fα )
(that can be proven to be invertible) then for all elements ξ ∈U(g), SF (ξ ) = χS(ξ )χ−1.
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We now construct the quantum Poincaré Lie algebra isoF(3,1). Following the
previous section, the Poincaré Lie algebra isoF(3,1) must be a linear subspace of
UF (iso(3,1)) such that if {ti}i=1,...,n is a basis of isoF(3,1), we have (sum under-
stood on repeated indices)

i) {ti} generates UF (iso(3,1))

ii) ΔF (ti) = ti ⊗ I + fi
j ⊗ t j

iii) [ti, t j]F = Ci j
ktk

where Ci j
k are structure constants and fi

j ∈UF (iso(3,1)) (i, j = 1, ...,n). In the last
line the bracket [ , ]

F
is the adjoint action:

[t, t ′]
F

:= adF
t t ′ = t1F

t ′S(t2F
) , (7.95)

where we used the coproduct notation ΔF (t) = t1F
⊗ t2F

. The statement that the
Lie algebra of UF (iso(3,1)) is the undeformed Poincaré Lie algebra (7.89) is not
correct because conditions ii) and iii) are not met by the generators Pμ and Mμν .
As we discuss in the next chapter (see in particular Sect. 8.2.3.1), there is a canon-
ical procedure [13] in order to obtain the Lie algebra isoF(3,1) of UF (iso(3,1)).
Consider the elements

PF
μ := f

α(Pμ)fα = Pμ , (7.96)

MF
μν := f

α(Mμν)fα = Mμν −
i
2
θρσ [Pρ ,Mμν ]Pσ

= Mμν +
1
2
θρσ (ημρPν −ηνρPμ)Pσ . (7.97)

Their coproduct is

ΔF (Pμ) = Pμ ⊗ I + I ⊗Pμ ,

ΔF (MF
μν) = MF

μν ⊗ I + I ⊗MF
μν + iθαβPα ⊗ [Pβ ,Mμν ] . (7.98)

The counit and antipode are

ε(Pμ) = ε(MF
μν) = 0 ,

S(Pμ) = −Pμ , S(MF
μν) = −MF

μν − iθρσ [Pρ ,Mμν ]Pσ . (7.99)

The elements PF
μ and MF

μν are generators because they satisfy condition i) (indeed
Mμν = MF

μν + i
2θ

ρσ [Pρ ,MF
μν ]Pσ ). They are deformed infinitesimal generators be-

cause they satisfy the Leibniz rule ii) and because they close under the Lie bracket
iii). Explicitly

[Pμ ,Pν ]F = 0 ,

[Pρ ,MF
μν ]F = i(ηρμPν −ηρνPμ) ,
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[MF
μν ,M

F
ρσ ]

F
= −i(ημρMF

νσ −ημσMF
νρ −ηνρMF

μσ +ηνσMF
μρ) . (7.100)

We notice that the structure constants are the same as in the undeformed case;
however, the adjoint action [MF

μν ,M
F
ρσ ]

F
is not the commutator anymore, it is a

deformed commutator quadratic in the generators and antisymmetric:

[Pμ ,Pν ]F = [Pμ ,Pν ] ,

[Pρ ,MF
μν ]F = [Pρ ,MF

μν ] ,

[MF
μν ,M

F
ρσ ]

F
= [MF

μν ,M
F
ρσ ]− iθαβ [Pα ,Mρσ ][Pβ ,Mμν ] . (7.101)

From (7.100) we immediately obtain the Jacobi identities:

[t , [t ′, t ′′]
F

]
F

+[t ′ , [t ′′, t]
F

]
F

+[t ′′ , [t, t ′]
F

]
F

= 0 , (7.102)

for all t, t ′, t ′′ ∈ isoF(3,1).

Appendix

7.8 Algebras, coalgebras, and Hopf algebras

In the introduction we have motivated the notion of Hopf algebra. We here review
some basic definitions in linear algebra and show how Hopf algebras merge algebra
and coalgebra structures in a symmetric (specular) way [26, 27], [21].

We recall that a module by definition is an abelian group. The group operation is
denoted + (additive notation). A vector space A over C (or R) is a C-module, i.e.,
there is an action (λ ,a) → λa of the group (C−{0}, ·) on the module A,

(λ ′λ )a = λ (λ ′a) , 1 a = a, (7.103)

and this action is compatible with the addition in A and in C, i.e., it is compatible
with the module structure of A and of C:

λ (a+a′) = λa+λa′ , (λ +λ ′)a = λa+λ ′a . (7.104)

In order to introduce the tensor product V ⊗W of two vector spaces V and W ,
we consider the vector space F(V,W ) freely generated by the points of V ×W ; a
generic element of F(V,W ) is a finite sum ∑iλi(vi,wi) where λi ∈ C, and the set of
all points (v,w)∈V ×W is a basis of F(V,W ). In F(V,W ) we consider the subspace
R(V,W ) generated by the elements

λ (v,w)− (λv,w), λ (v,w)− (v,λw), (7.105)

(v+ v′,w)− (v,w)− (v′,w), (v,w+w′)− (v,w)− (v,w′) . (7.106)
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The quotient F(V,W )/R(V,W ) is the tensor product space V ⊗W . The equivalence
class of the element (v,w) is denoted v⊗w, and from the definition of R(V,W ) we
have

λ (v⊗w) = (λv)⊗w = v⊗ (λw) ,

(v+ v′)⊗w = v⊗w+ v′ ⊗w, v⊗ (w+w′) = v⊗w+ v⊗w′ .

From the definition of V ⊗W it follows that a generic element F ∈V ⊗W is a finite
sum (over the index α) F = f α ⊗ fα of elements f α ∈ V , fα ∈ W . If V and W are
finite dimensional and dimV = m, dimW = n, then dim(V ⊗W ) = n ·m.

The tensor space V ⊗W can also be defined categorically: given V,W,U vector
spaces, to any map l : V ×W →U linear in V and in W , there correspond a unique
map l̃ : V ⊗W →U , such that l(v,w) = l̃(v⊗w).

An algebra A over C with unit I is a vector space over C with a multiplication
map that we denote · or μ ,

μ : A×A → A (7.107)

that is C-bilinear: (λa) · (λ ′b) = λλ ′(a · b), that is associative and that for all a
satisfies a · I = I ·a = a.

These three properties can be stated diagrammatically. C-bilinearity of the prod-
uct μ : A×A → A is equivalently expressed as linearity of the map μ : A⊗A → A.
Associativity reads,

A⊗A⊗A
μ⊗id−−−−→ A⊗A

id⊗μ
⏐⏐% μ

⏐⏐%
A⊗A

μ−−−−→ A

Finally the existence of the unit I such that for all a we have a · I = I · a = a is
equivalent to the existence of a linear map

i : C → A (7.108)

such that
C⊗A

i⊗id−−−−→ A⊗A

�
⏐⏐% μ

⏐⏐%
A

id−−−−→ A

and

A⊗C
id⊗i−−−−→ A⊗A

�
⏐⏐% μ

⏐⏐%
A

id−−−−→ A
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where � denotes the canonical isomorphism between A⊗C (or C⊗A) and A. The
unit I is then recovered as i(1) = I.

A coalgebra A over C is a vector space with a linear map Δ : A → A⊗A that is
coassociative,

(id ⊗Δ)Δ = (Δ ⊗ id)Δ ,

and a linear map ε : A → C, called counit that satisfies

(id ⊗ ε)Δ(a) = (ε⊗ id)Δ(a) = a .

These properties can be expressed diagrammatically by reverting the arrows of the
previous diagrams:

A⊗A⊗A
Δ⊗id←−−−− A⊗A

id⊗Δ
&⏐⏐ Δ

&⏐⏐
A⊗A

Δ←−−−− A

C⊗A
ε⊗id←−−−− A⊗A

�
&⏐⏐ Δ

&⏐⏐
A

id←−−−− A

and

C⊗A
id⊗ε←−−−− A⊗A

�
&⏐⏐ Δ

&⏐⏐
A

id←−−−− A

We finally arrive at the following:

Definition A bialgebra A over C is a vector space A with an algebra structure and a
coalgebra structure that are compatible, i.e.,

1) the coproduct Δ is an algebra map between the algebra A and the algebra A⊗A,
where the product in A⊗A is (a⊗b)(c⊗d) = ac⊗bd,

Δ(ab) = Δ(a)Δ(b), Δ(I) = I ⊗ I. (7.109)

2) The counit ε : A → C is an algebra map

ε(ab) = ε(a)ε(b), ε(I) = 1 . (7.110)



130 Paolo Aschieri

Definition A Hopf algebra is a bialgebra with a linear map S : A → A, called
antipode (or coinverse), such that

μ(S⊗ id)Δ(a) = μ(id ⊗S)Δ(a) = ε(a)I . (7.111)

It can be proven that the antipode S is unique and antimultiplicative

S(ab) = S(b)S(a) .

From the definition of bialgebra it follows that μ : A⊗A → A and i : C → A are
coalgebra maps, i.e., Δ ◦μ = μ⊗μ ◦Δ , ε⊗μ = ε and Δ ◦ i = i⊗ i◦ΔC, ε ◦ i = εC ,
where the coproduct and counit in A⊗A are given by Δ(a⊗b) = a1 ⊗b1 ⊗a2 ⊗b2

and ε = ε⊗ ε , while the coproduct in C is the map ΔC that identifies C with C⊗C

and the counit is εC = id. Vice versa if A is an algebra and a coalgebra and μ and i
are coalgebra maps then it follows that Δ and ε are algebra maps.

One can write diagrammatically Eqs. (7.109), (7.110), (7.111) and see that the
Hopf algebra definition is invariant under inversion of arrows and exchange of struc-
tures with costructures, with the antipode going into itself. In this respect the algebra
and the coalgebra structures in a Hopf algebra are dual (specular). This property im-
plies that the space H ′ of linear maps of a finite-dimensional Hopf algebra H is a
Hopf algebra itself (cf. Sect. 7.5).

7.9 Hopf algebra twists

Definition A twist of a Hopf algebra H is an element F ∈ H ⊗H that is invertible,
that satisfies the cocycle condition

(F ⊗ I)(Δ ⊗ id)F = (I ⊗F )(id⊗Δ)F (7.112)

and that is properly normalized, i.e.,

(id ⊗ ε)F = (ε⊗ id)F = 1⊗1 . (7.113)

In this book we consider twists F of Hopf algebras Ug that are universal en-
veloping algebras (or of quantum universal enveloping algebras Uqg as in Sect. 9.3.2).
In order for these elements F (that are typically the exponential of elements in g⊗g)
to be mathematically well-defined twists, some care is needed. The aim of this sec-
tion is to show that, in the deformation quantization context we use, these elements
F are well-defined examples of Hopf algebra twists.

We have considered algebras A over the field C. More in general we can consider
algebras over a commutative ring R. We recall that a commutative ring R is a mod-
ule with a map μ : R×R → R that is associative and commutative and compatible
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with the module structure, i.e., the product μ is distributive over the addition +; we
consider rings with unit element 1 ∈ R.

An algebra A over a commutative ring R is an R-module, i.e., it is a module that
satisfies the properties (7.103) and (7.104) (with λ ∈ R rather than C) and with the
multiplication map μ : A×A → A that is R-bilinear.

An example of ring is the ring C[[h]] of formal power series in h over C. The
universal enveloping algebra Ug of the Lie algebra g is an algebra over C, while
Ug[[h]] (formal power series in h over Ug) is an algebra over C[[h]].

We now observe that the tensor product construction U ⊗W holds also if V and
W are R-modules, just consider λ ,λ ′ ∈ R in (7.103) and (7.104). In particular we
can consider Ug[[h]]⊗Ug[[h]], where the tensor product is over C[[h]].

We can now show that in this context the twists F we consider in this book
are well-defined twists because F are elements of Ug[[h]]⊗Ug[[h]]. For example,
consider the abelian Lie algebra of partial derivatives ∂μ on Minkowski space and
the twist

F = e−
i
2 hθμν∂μ⊗∂ν .

The exponential is considered a formal power series expansion in h,

F = e−
i
2 hθμν ∂

∂xμ ⊗ ∂
∂xν

=∑ hn

n!

(
− i

2

)n

θμ1ν1 . . .θμnνn∂μ1 . . .∂μn ⊗∂ν1 . . .∂νn , (7.114)

the coefficient of hn is a finite sum of elements of Ug⊗
C

Ug, this shows that F is
an element of (Ug⊗

C
Ug)[[h]]. Obviously (Ug⊗

C
Ug)[[h]] = Ug[[h]]⊗

C[[h]] Ug[[h]],
and therefore F is indeed a twist of the Hopf algebra Ug[[h]] (over the ring C[[h]]).

Notice that on the other hand if we consider h a complex number then strictly
speaking F does not belong to Ug⊗Ug (tensor product over C) because the expo-
nential gives an infinite sum of elements of Ug.

These subtleties can frequently be ignored in physical applications. There one
considers Lagrangian field theories where fields are �-multiplied. These theories
are deformations of usual field theories. Quite a few aspects of these theories can
be understood by considering a power series expansion in the noncommutativity
parameter. In this case one neglects terms higher than a fixed one, say hn, in the
action functional. Then h can be considered a (possibly small) real number and
θμν are dimensionful parameters responsible for new interaction terms (interaction
terms in the action due to the noncommutativity of spacetime).
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21. S. Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge

(1995). 119, 125, 127
22. M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpreta-

tion of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett.
B604, 98 (2004), [hep-th/0408069]. 125

23. J. Wess, Deformed Coordinate Spaces; Derivatives, in Proceedings of the BW2003 Work-
shop, Vrnjacka Banja, Serbia (2003), 122–128, World Scientific (2005), [hep-th/0408080]. 125

24. V. G. Drinfel’d, On constant quasiclassical solutions of the Yang-Baxter equations, Soviet
Math. Dokl. 28, 667 (1983). 125

25. V. G. Drinfel’d, Quasi-Hopf Algebras, Lengingrad Math. J. 1, 1419 (1990), [Alg. Anal. 1 N6,
114 (1989)]. 125

26. M. E. Sweedler, Hopf Algebras, Benjamin, New York (1969). 127
27. E. Abe, Hopf Algebras, Cambridge University Press (1980). 127



Chapter 8
Noncommutative Symmetries and Gravity

Paolo Aschieri

Spacetime geometry is twisted (deformed) into noncommutative spacetime geome-
try, where functions and tensors are now star multiplied. Consistently, spacetime dif-
feomorphisms are twisted into noncommutative diffeomorphisms. Their deformed
Lie algebra structure and that of infinitesimal Poincaré transformations is defined
and explicitly constructed. We can then define covariant derivatives (that implement
the principle of general covariance on noncommutative spacetime) and torsion and
curvature tensors. With these geometric tools we formulate a noncommutative the-
ory of gravity.

8.1 Introduction

The study of the structure of spacetime at Planck scale, where quantum gravity ef-
fects are non-negligible, is a main open challenge in fundamental physics. Since the
dynamical variable in Einstein general relativity is spacetime itself (with its metric
structure) and since in quantum mechanics and in quantum field theory the classical
dynamical variables become noncommutative, one is led to conclude that noncom-
mutative spacetime is a feature of Planck scale physics. This expectation is further
supported by Gedanken experiments that aim at probing spacetime structures at
very small distances. They show that due to gravitational backreaction one cannot
test spacetime at Planck scale. For example, in relativistic quantum mechanics the
position of a particle can be detected with a precision at most of the order of its
Compton wavelength λC = h̄/mc. Probing spacetime at infinitesimal distances im-
plies an extremely heavy particle that in turn curves spacetime itself. When λC is of
the order of the Planck length, the spacetime curvature radius due to the particle has
the same order of magnitude and the attempt to measure spacetime structure beyond
Planck scale fails.

Gedanken experiments of this type support finite reductionism. They show that
the description of spacetime as a continuum of points (a smooth manifold) is an

Aschieri, P.: Noncommutative Symmetries and Gravity. Lect. Notes Phys. 774, 133–164 (2009)
DOI 10.1007/978-3-540-89793-4 8 c© Springer-Verlag Berlin Heidelberg 2009
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assumption no more justified at Planck scale. It is then natural to relax this assump-
tion and conceive a more general noncommutative spacetime, where uncertainty
relations and discretization naturally arise. In this way one can argue for the impos-
sibility of an operational definition of continuous Planck length spacetime (i.e., a
definition given by describing the operations to be performed for at least measuring
spacetime by a Gedanken experiment). A dynamical feature of spacetime could be
incorporated at a deeper kinematical level.

As an example compare Galilean relativity to special relativity. Contraction of
distances and time dilatation can be explained in Galilean relativity: they are a con-
sequence of the interaction between ether and the body in motion. In special relativ-
ity they have become a kinematical feature.

This line of thought has been anticipated by Riemann, see Sect. 1.1, considered
in [1], and more recently in [2–17] (see also the review [18]).

We also notice that uncertainty relations in position measurements are in agree-
ment with string theory models [19–25] and that non-perturbative attempts to de-
scribe string theories have shown that a noncommutative structure of spacetime
emerges [26].

A first question to be asked in the context we have outlined is whether one can
consistently deform Riemannian geometry into a noncommutative Riemannian ge-
ometry. In this chapter we address this question. We construct a noncommutative
version of differential and of Riemannian geometry and obtain the noncommutative
version of Einstein equations.

We consider noncommutative deformations of the algebra of functions on a
smooth manifold M obtained by deforming the usual pointwise product to a �-
product. It is possible to consider a wide class of �-products. These �-products are
associated with a twist F of the Lie algebra of infinitesimal diffeomorphisms on
the smooth manifold M. For pedagogical reasons in this chapter we treat mainly the
case of constant noncommutativity, xμ � xν − xν � xμ = iθμν , and we assume that
commutative spacetime as a manifold is R

4. The general case is discussed in [16]
([27]). In this case the twist F is arbitrary; it is tempting to introduce equations of
motion for F and thus describe a spacetime geometry where both the metric aspect
and the noncommutative aspect are dynamical.

As argued, noncommutativity should be relevant at Planck scale; however, the
physical phenomena it induces can also appear at lower energies. Consider for ex-
ample the perturbations responsible for structure formation and for the temperature
anisotropies in the cosmic microwave background radiation. They arise as quantum
fluctuations during the inflationary epoch and are stretched to cosmological scales
by the exponential expansion. Hence these perturbations are sensitive to physics at
distances at least as small as the horizon size during inflation which is not far from
Planck scale. Noncommutativity of spacetime at inflation scale leads to quadrupole
moment contributions to the cosmic microwave background spectrum [28].
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Another interesting study is the formulation of the noncommutative analogue of
the Friedmann–Robertson–Walker spacetime, as well as of other classical solutions
of the Einstein equations.

Even without physical motivations, the mathematical structure of deformed
spaces is a challenging and fruitful research arena. It is very surprising how well
�-noncommutative structures can be incorporated in the framework of differential
geometry.

Structure of the chapter
In Sect. 8.2 we introduce the twist F = e−

i
2 θ

μν∂μ⊗∂ν . The general notion of twist
is well known [29, 30]. Multiparametric twists appear in [31]. In the context of de-
formed Poincaré group and Minkowski space geometry twists have been studied
in [32–36] (multiparametric deformations) and in [37–43] (Moyal–Weyl deforma-
tions).

Given a twist F we state the general principle that allows to construct noncom-
mutative products by composing commutative products with the twist F . In this
way we obtain the algebras of noncommutative functions, tensor fields, exterior
forms, and diffeomorphisms. Noncommutative diffeomorphisms are then shown to
naturally act on tensor fields and forms. We study in detail the notion of infinitesimal
diffeomorphism and the corresponding notion of deformed Lie algebra.

In Sect. 8.3 we present the example of the Poincaré symmetry, give explicitly the
infinitesimal generators and their deformed Lie bracket, and explain the geometric
origin of the latter. The generators and the bracket differ from the ones usually
considered in the literature.

In Sect. 8.4 we use the noncommutative differential geometry formalism intro-
duced in Sect. 8.2 and develop the notion of covariant derivative and of torsion,
curvature, and Ricci curvature tensors.

In Sect. 8.5 a metric on noncommutative space is introduced. The correspond-
ing unique torsion-free metric compatible connection is used to construct the Ricci
tensor and obtain the Einstein equations for gravity on noncommutative spacetime.

In Appendix 8.6 we show that the algebra of differential operators is not a Hopf
algebra, and we relate it to the Hopf algebra of infinitesimal diffeomorphisms.

8.2 Deformation by twists

A quite general procedure in order to construct noncommutative spaces and
noncommutative field theories is that of a twist. The ingredients are

I) A Lie algebra g.

II) An action of the Lie algebra on the space one wants to deform.

III) A twist element F , constructed with the generators of the Lie algebra g.
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8.2.1 The twist F

A twist element F is an invertible element in Ug⊗Ug, where Ug is the universal
enveloping algebra of g. Ug is a Hopf algebra, in particular there is a linear map,
called coproduct

Δ : Ug →Ug⊗Ug . (8.1)

For every Lie algebra element t ∈ g we have1

Δ(t) = t ⊗1+1⊗ t . (8.2)

The coproduct Δ is extended to all Ug by defining

Δ(tt ′) := Δ(t)Δ(t ′) = tt ′ ⊗1+ t ⊗ t ′ + t ′ ⊗ t +1⊗ tt ′

and more generally Δ(tt ′ . . . t ′′) = Δ(t)Δ(t ′) . . .Δ(t ′′). The main property F has to
satisfy is the cocycle condition

(F ⊗1)(Δ ⊗ id)F = (1⊗F )(id⊗Δ)F . (8.3)

If g is the Lie algebra of vector fields on spacetime M = R
4, or simply the subal-

gebra spanned by the commuting vector fields ∂/∂xμ , we can consider the twist

F = e−
i
2 θ

μν ∂
∂xμ ⊗ ∂

∂xν , (8.4)

with θμν an antisymmetric constant matrix. The inverse of F is

F−1 = e
i
2 θ

μν ∂
∂xμ ⊗ ∂

∂xν .

The star product between functions can be obtained from the usual pointwise
product via the action of the twist operator, namely,

f �g := μ ◦F−1( f ⊗g) , (8.5)

where μ is the usual pointwise product between functions, μ( f ⊗g) = f g.
Despite the μν index notation, we will consistently consider the entries θμν of

the antisymmetric matrix θ as fundamental dimensionful constants, like c or h̄. In
particular the deformed spacetime symmetries we consider will leave invariant the
θ matrix. The point is that the exponent of F ,

θμν
∂
∂xμ

⊗ ∂
∂xν

1 In this chapter for ease of notation we denote the unit of Ug simply by 1 (and not by I as in the
previous chapter).



8 Noncommutative Symmetries and Gravity 137

is not the Poisson tensor associated with the �-product. The difference lies in the
tensor product ⊗. The Poisson tensor is

θμν
∂
∂xμ

⊗A
∂
∂xν

, (8.6)

where we have explicitly written that the tensor product is over the algebra A =
Fun(R4) of smooth functions on spacetime. On the other hand the tensor product in
F is over the complex numbers, we should write

F = e−
i
2 θ

μν ∂
∂xμ ⊗C

∂
∂xν .

That is why θμν in F is not a tensor but a set of constants. In this respect, a better
notation for F is

F = e
−i
2 θ

abXa⊗Xb , (8.7)

where a,b = 1, ...,4 and X1 = ∂
∂x1 , . . . , X4 = ∂

∂x4 are globally defined vector fields
on spacetime.

It is easy to prove that F satisfies the cocycle condition (8.3). Since the coproduct
Δ is multiplicative we have

(Δ ⊗ id)F = e−
i
2 θ

μνΔ( ∂
∂xμ )⊗ ∂

∂xν = e−
i
2 θ

μν( ∂
∂xμ ⊗1⊗ ∂

∂xν +1⊗ ∂
∂xμ ⊗ ∂

∂xν ), (8.8)

and therefore, since partial derivatives mutually commute,

(F ⊗1)(Δ ⊗ id)F = e−
i
2 θ

μν( ∂
∂xμ ⊗ ∂

∂xν ⊗1+ ∂
∂xμ ⊗1⊗ ∂

∂xν +1⊗ ∂
∂xμ ⊗ ∂

∂xν ) . (8.9)

The right-hand side of (8.3) is easily proven to coincide with this expression.

We shall frequently use the notation (sum over α = 1,2, ...,∞ understood)

F = fα ⊗ fα , F−1 = f
α ⊗ fα , (8.10)

where, for each value of α , f
α

and fα are two distinct elements of Ug (and similarly
fα , fα ∈Ug). Explicitly these elements are

F−1 = e
i
2 θ

μν ∂
∂xμ ⊗ ∂

∂xν

=∑
n

1
n!

(
i
2

)n

θμ1ν1 . . .θμnνn∂μ1 . . .∂μn ⊗∂ν1 . . .∂νn

= f
α ⊗ fα . (8.11)

From this expression we also see that α is a multi-index, it runs over all the values of
the indices ν ,ν1ν2,ν1ν2ν3, ... . Using this notation the �-product between functions
reads

f �g := f
α( f )fα(g) . (8.12)
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We also introduce the universal R-matrix

R := F21F
−1, (8.13)

where by definition F21 = fα ⊗ fα . In the sequel we use the notation

R = Rα ⊗Rα , R−1 = R
α ⊗Rα . (8.14)

In the case of the twist (8.4) we simply have R = F−2 but for more general twists
this is no more the case. The R-matrix measures the noncommutativity of the �-
product. Indeed it is easy to see that due to the antisymmetry of θμν , f

α(h)fα(g) =
fα(g)fα(h). Since R−1 = F 2 it then immediately follows that

h�g = R
α(g)�Rα(h) . (8.15)

Note 8.1 Since elements of the tensor product Ug ⊗Ug by definition are finite
linear combinations of elements ξ ⊗ζ where ξ ,ζ ∈Ug, the twist F strictly speak-
ing does not belong to Ug⊗Ug, because, due to the exponential, an infinite sum
over α is understood in expressions (8.10). As we explain in Appendix 7.9, the cor-
rect mathematical definition is to introduce a formal parameter h, then, denoting by
C[[h]] the ring of power series in h with coefficients in C, and by Ug[[h]] the al-
gebra of power series in h with coefficients in Ug, we have the well-defined twist

F = e
− i

2 hθμν ∂
∂xμ ⊗

C[[h]]
∂
∂xν ∈Ug[[h]]⊗C[[h]] Ug[[h]] .

The need for the formal parameter h can also be seen from the definition of the
�-product. If f and g are polynomial functions in the xμ coordinates then f � g
(without formal parameter h) is again a well-defined polynomial function. However,
more in general, for smooth functions f and g, the existence of the function f � g
(with no formal parameter h in the �-product) depends on the convergence of the
series f � g. Therefore, in this case the �-product is not a well-defined product on
the algebra of smooth functions. On the other hand if we work in the deformation
quantization context, f and g belong to Fun(R4)[[h]], the algebra of formal power
series in h with coefficients in the space of smooth functions Fun(R4). Then f �g is
automatically in Fun(R4)[[h]].

In this book we usually omit writing explicitly the deformation parameter h and
we include it in the definition of θμν . Moreover frequently we expand the action
functional or the equations of motion at a given order n in h (or θμν ) thus the twists
F and the star product can be approximated by considering only the first n order
terms in their θμν expansion.

Note 8.2 We can consider twists and �-products on arbitrary manifolds not just
on R

4. For example, given a set of mutually commuting vector fields {Xa} (a =
1,2, . . . ,n) on a d-dimensional manifold M, we can consider the twist

F = e− i
2 θ

abXa⊗Xb . (8.16)
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The proof (8.9) of the cocycle condition for F holds also in this case, indeed for the
proof one only needs the Lie algebra elements Xa to be mutually commuting. The
class of �-products that can be obtained from these type of twist F (named abelian
twists) is quite rich. For example, on R

2 we can obtain star products that give the
commutation relations x�y = qy�x with q ∈C, and similarly in R

n (see for example
[16]).

Another example of twist is F = e
1
2 H⊗ln(1+λE) where the vector fields H and E

satisfy [H,E] = 2E. In these cases too the �-product defined via (8.5) is associative
and properly normalized.

In general an element F of Ug⊗Ug is by definition a twist if it is invertible, if
it satisfies the cocycle condition (8.3), and if it is properly normalized, i.e.,

(id ⊗ ε)F = (ε⊗ id)F = 1⊗1 , (8.17)

where ε : Ug → C is the counit map. ε is the linear and multiplicative map defined
by ε(1) = 1 and by ε(t) = 0 for all t ∈ g, cf. (7.34). The normalization condition
(8.17) implies the normalization property of the �-product f �1 = 1� f = f . On the
other hand the cocycle condition (8.3) implies associativity of the �-product.

In the remaining of this note we present a proof of this statement. It can be
omitted in a first reading. We begin by inverting relation (8.3) and we obtain
((Δ⊗ id)F−1)F−1

12 = ((id⊗Δ)F−1)F−1
23 . Equivalently, using the F−1 = f

α⊗fα
notation,

f
α
1

f
β ⊗ f

α
2

fβ ⊗ fα = f
α ⊗ fα1 f

β ⊗ fα2 fβ .

Here we used Sweedler’s notation for the coproduct, for all ξ ∈Ug, Δ(ξ ) = ξ1⊗ξ2

(a sum over ξ1 and ξ2 is understood). We recall that the coproduct Δ(ξ ) follows
from the coproduct Δ(t) = t ⊗ 1 + 1⊗ t for the Lie algebra elements t ∈ g ⊂ Ug.
This latter coproduct implies the Leibniz rule t( f h) = t( f )h+ f t(h), and henceforth
ξ ( f h) = ξ1( f )ξ2(g). Then we compute, for arbitrary functions f ,g,h,

( f �g)�h = f
α(fβ ( f )fβ (g))fα(h) = (fα

1
f
β )( f )(fα

2
fβ )(g)fα(h)

= f
α( f )(fα1 f

β )(g)(fα2 fβ )(h) = f
α( f )fα(fβ (g)fβ (h))

= f � (g�h) .

The point of this proof is that it uses only the twist cocycle property (8.3) and prop-
erty II) stated at the very beginning of this section, i.e., an action of the Lie algebra
g (and henceforth of Ug) on the algebra of functions. The algebra of functions is
said to be a Ug-module algebra [29] (see also [46], and [16]).

8.2.2 �-Tensor algebra

We now use the twist to deform the commutative geometry on spacetime (vec-
tor fields, 1-forms, exterior algebra, tensor algebra, symmetry algebras, covariant
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derivatives, etc.) into the twisted noncommutative one. The guiding principle is the
observation that every time we have a bilinear map

μ : X ×Y → Z,

where X ,Y,Z are vector spaces, and where there is an action of the Lie algebra g
(and therefore of F−1) on X and Y we can combine this map with the action of the
twist. In this way we obtain a deformed version μ� of the initial bilinear map μ :

μ� := μ ◦F−1 , (8.18)

μ� : X ×Y → Z

(x,y) 
→ μ�(x,y) = μ(fα(x), fα(y)) .

The cocycle condition (8.3) implies that if μ is an associative product then also μ�

is an associative product.

Algebra of Functions A�. If X = Y = Z = Fun(M) where A ≡ Fun(M) is the space
of functions on spacetime M, we obtain the star product formulae (8.5) and (8.12),

f �g = f
α( f )fα(g) =∑

n

1
n!

(
i
2

)n

θμ1ν1 . . .θμnνn∂μ1 . . .∂μn( f ) ∂ν1 . . .∂νn(g) .

(8.19)
The �-product is associative because of the cocycle condition (8.3). We denote by A�

the noncommutative algebra of functions with the �-product. Notice that to define
the �-product we need condition II), the action of the Lie algebra on functions. In
this case it is given by the Lie derivative. In the sequel we will always use the Lie
derivative action.

Vector fields Ξ�. We now deform the product μ : A⊗Ξ → Ξ between the space
A = Fun(M) of smooth functions on spacetime M and vector fields. A generic vector
field is v = vν∂ν . Partial derivatives act on vector fields via the Lie derivative action

∂μ(v) = [∂μ ,v] = ∂μ(vν)∂ν . (8.20)

According to (8.18) the product μ : A⊗Ξ → Ξ is deformed into the product

h� v = f
α(h)fα(v) . (8.21)

Since F−1 = e
i
2 θ

μν∂μ⊗∂ν , iterated use of (8.20) gives

h� v = f
α(h)fα(v) = f

α(h)fα(vν)∂ν = (h� vν)∂ν . (8.22)

It is then easy to see that h � (g � v) = (h � g) � v. We have thus constructed the A�

module of vector fields. We denote it by Ξ�. As vector spaces Ξ = Ξ�, but Ξ is an
A module while Ξ� is an A� module.
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1-forms Ω�. The space of 1-forms Ω becomes also an A� module, with the product
between functions and 1-forms given again by following the general prescription
(8.18):

h�ω := f
α(h)fα(ω) . (8.23)

The action of fα on forms is given by iterating the Lie derivative action of the vector
field ∂μ on forms. Explicitly, if ω = ωνdxν we have

∂μ(ω) = ∂μ(ων)dxν (8.24)

and ω = ωνdxν = ωμ �dxμ .
Functions can be multiplied from the left or from the right, if we deform the

multiplication from the right we obtain the new product

ω �h := f
α(ω)fα(h) (8.25)

and we “move h to the right” with the help of the R-matrix,

ω �h = R
α(h)�Rα(ω) . (8.26)

We have defined the A�-bimodule of 1-forms.

Tensor fields T�. Tensor fields form an algebra with the tensor product ⊗. We define
T� to be the noncommutative algebra of tensor fields. As vector spaces T = T� the
noncommutative tensor product is obtained by applying (8.18):

τ⊗� τ ′ := f
α(τ)⊗ fα(τ ′) . (8.27)

Associativity of this product follows from the cocycle condition (8.3).

Notice that ∂ρ ⊗� ∂η = ∂ρ ⊗ ∂η because the partial derivatives of f
α

applied on
∂ρ give zero. More in general, if we consider the local coordinate expression of two
tensor fields, for example, of the type

τ = τμ1,...μm∂μ1 ⊗� . . .∂μm ,

τ ′ = τ ′ν1,...νn∂ν1 ⊗� . . .∂νn ,

then their �-tensor product is

τ⊗� τ ′ = τμ1,...μm � τ ′ν1,...νn∂μ1 ⊗� . . .∂μm ⊗� ∂ν1 ⊗� . . .∂νn . (8.28)

There is a natural action of the permutation group on undeformed tensor fields:

τ⊗ τ ′ σ−→ τ ′ ⊗ τ .

In the deformed case it is the R-matrix that provides a representation of the permu-
tation group on �-tensor fields:
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τ⊗� τ ′
σ

R−→ R
α(τ ′)⊗� Rα(τ) .

It is easy to check that, consistently with σR being a representation of the permuta-
tion group, we have (σR)2 = id. Indeed we have R−1 = R21, i.e., the R-matrix is
triangular.

Exterior formsΩ ·
� =⊕pΩ p

� . Exterior forms form an algebra with product ∧ : Ω ·×
Ω · →Ω ·. We �-deform the wedge product into the �-wedge product,

ϑ ∧�ϑ ′ := f
α(ϑ)∧ fα(ϑ ′) . (8.29)

We denote by Ω ·
� the linear space of forms equipped with the wedge product ∧�.

As in the commutative case exterior forms are totally �-antisymmetric contravari-
ant tensor fields. For example, the 2-form ω ∧�ω ′ is the �-antisymmetric combina-
tion

ω ∧�ω ′ = ω⊗�ω ′ −R
α(ω ′)⊗� Rα(ω) . (8.30)

Since the Lie derivative and the exterior derivative commute, the usual exterior
derivative d : A →Ω satisfies the Leibniz rule

d(h�g) = dh�g+h�dg (8.31)

and is therefore also the �-exterior derivative. On higher forms too the usual exterior
derivative satisfies the Leibniz rule d(ϑ ∧� ϑ ′) = dϑ ∧� ϑ ′ +(−1)|ϑ |ϑ ∧� dϑ ′ and
is therefore also the �-exterior derivative. Due to the commutativity between Lie
derivative and exterior derivative it turns out that the de Rham cohomology ring is
undeformed.

�-Pairing between 1-forms and vector fields. We now consider the bilinear map

〈 , 〉 : Ξ ×Ω → A , (8.32)

(v,ω) 
→ 〈v,ω〉 = 〈vμ∂μ ,ωνdxν〉 = vμωμ . (8.33)

Always according to the general prescription (8.18) we deform this pairing into

〈 , 〉� : Ξ� ×Ω� → A� , (8.34)

(ξ ,ω) 
→ 〈ξ ,ω〉� := 〈fα(ξ ), fα(ω)〉 . (8.35)

It is easy to see that the �-pairing satisfies the A�-linearity properties

〈h�u,ω � k〉� = h� 〈u,ω〉� � k , (8.36)

〈u,h�ω〉� = R
α(h)� 〈Rα(u),ω〉� . (8.37)

Notice that 〈∂μ ,dxν〉� = 〈∂μ ,dxν〉 = δνμ .
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Using the pairing 〈 , 〉� we associate to any 1-form ω the left A�-linear map
〈 ,ω〉�. Also the converse holds: any left A�-linear map Φ : Ξ� → A� is of the form
〈 ,ω〉� for some ω (explicitly ω =Φ(∂μ)dxμ ).

Note 8.3 In order to understand the coordinate independence of expression (8.19) it
is helpful to rewrite it using the notation (8.7),

f �g = f
α( f )fα(g) =∑

n

1
n!

(
i
2

)n

θ a1b1 . . .θ anbnXa1 . . .Xan( f ) Xb1 . . .Xbn(g) .

(8.38)
Let us study the first order in θ term, i

2θ
abXa( f )Xb(g). The expression Xa( f ) de-

notes the Lie derivative of the global vector field Xa on the function f (globally
defined on the spacetime manifold) and therefore Xa( f ) is a new globally de-
fined function; similarly Xb(g). Then also i

2θ
abXa( f )Xb(g) is a new globally de-

fined function because it is a linear combination, with constant coefficients θ ab

of globally defined functions. Similarly also Xa1( . . .Xan( f )...) is a globally de-
fined (coordinate-independent) function on spacetime. In the {xμ} reference frame
it simply reads ∂

∂xμ1 ( . . . ∂
∂xμn ( f )...); in another coordinate system {yν} it reads

eν1
μ1

∂
∂yμ1 ( . . .eνn

νn
∂

∂yνn ( f )...), where ∂
∂xμ = eνμ(y) ∂

∂yν . The transformation xμ → yμ is
a finite coordinate transformation on commutative spacetime. Later on we study
infinitesimal noncommutative coordinate transformations.

The transformation properties of expression (8.21) are shown by using arguments
similar to those after (8.38). The important point is that according to the notation
(8.7), the partial derivatives present in the twist are a specific choice of (globally
defined) vector fields Xa. These vector fields act on (globally defined) vector fields
v via the Lie derivative action, Xa(v) = [Xa,v], the formalism is geometric, [Xa,v] is
a new (globally defined) vector field.

8.2.3 �-Diffeomorphism symmetry

The twist deformation program of the previous section can be further developed and
we can study the deformed symmetry transformations acting on deformed tensor
fields. The appropriate language for the study of symmetries in this context is that
of Hopf algebras.

�-Hopf algebra of diffeomorphisms UΞ�. We recall that the (infinite-dimensional)
linear space Ξ of smooth vector fields on spacetime M becomes a Lie algebra
through the map

[ ] : Ξ ×Ξ → Ξ
(u,v) 
→ [u v]. (8.39)
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The element [u v] of Ξ is defined by the usual Lie bracket

[u v](h) = u(v(h))− v(u(h)), (8.40)

where h is a function on spacetime.
The Lie algebra of vector fields (i.e., the algebra of infinitesimal local diffeomor-

phisms) can also be seen as an abstract Lie algebra without referring to the action of
vector fields on functions. The universal enveloping algebra UΞ of this abstract Lie
algebra is the associative algebra (over C) generated by the elements of Ξ and the
unit element 1 and where the element [u v] is given by the commutator uv− vu, i.e.,
uv− vu = [u v]. Here uv and vu denote the product in UΞ . The algebra UΞ is the
universal enveloping algebra of vector fields (infinitesimal local diffeomorphisms),
we shall denote its generic elements (sums of products of vector fields u ∈ Ξ ) by the
letters ξ , ζ , η ,. . . .

The undeformed algebra UΞ has a natural Hopf algebra structure [44–46]. On
the generators u ∈ Ξ the coproduct map Δ , the counit ε and the antipode S are
defined by

Δ(u) = u⊗1+1⊗u ,

ε(u) = 0 (8.41)

S(u) = −u

(and Δ(1) = 1⊗ 1, ε(1) = 1, S(1) = 1). The maps Δ and ε are then extended as
algebra homomorphisms and S as antialgebra homomorphism to the full enveloping
algebra, Δ : UΞ →UΞ ⊗UΞ , ε : UΞ → C, and S : UΞ →UΞ ,

Δ(ξζ ) := Δ(ξ )Δ(ζ ) ,

ε(ξζ ) := ε(ξ )ε(ζ ) , (8.42)

S(ξζ ) := S(ζ )S(ξ ) .

The extensions of Δ , ε , and S are well defined because they are compatible with the
relations uv−vu = [u v] (for example, S(uv−vu) = S(v)S(u)−S(u)S(v) =−[u v] =
S[u v]).

On the generators, the coproduct encodes the Leibniz rule property u(hg) =
u(h)g+hu(g), the antipode expresses the fact that the inverse of the group element
eu is e−u, while the counit associates to every element eu the identity 1.

In order to construct the deformed algebra of diffeomorphisms we apply the
recipe (8.18) and deform the product in UΞ into the new product

ξ �ζ = f
α(ξ )fα(ζ ) . (8.43)

We call UΞ� the new algebra with product �, as vector spaces UΞ = UΞ�. Since
any sum of products of vector fields in UΞ can be rewritten as sum of �-products of
vector fields via the formula uv = fα(u)� fα(v), vector fields u generate the algebra
UΞ�.
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It turns out [16] that UΞ� has also a natural Hopf algebra structure. We describe
it by giving the coproduct, the counit, and the antipode2 on the generators u of UΞ�:

Δ�(u) = u⊗1+R
α ⊗Rα(u) , (8.44)

ε�(u) = ε(u) = 0 , (8.45)

S�(u) = −R
α(u)Rα . (8.46)

In Appendix 8.7 we prove for example coassociativity of the coproduct Δ�. We here
show that the coproduct definition (8.44) can be inferred from a deformed Leibniz
rule.

There is a natural action (Lie derivative) of Ξ� on the space of functions A�. It is
given once again by combining the usual Lie derivative on functions Lu(h) = u(h)
with the twist F as in (8.18),

L �
u (h) := f

α(u)(fα(h)) . (8.47)

By recalling that every vector field can be written as u = uμ �∂μ = uμ∂μ we have

L �
u (h) = f

α(uμ∂μ)(fα(h)) = f
α(uμ)∂μ(fα(h))

= uμ �∂μ(h) , (8.48)

where in the second equality we have considered the explicit expression (8.11) of f
α

in terms of partial derivatives, and we have iteratively used the property [∂ν ,uμ∂μ ] =
∂ν(u)∂μ . In the last equality we have used that the partial derivatives contained in
fα commute with the partial derivative ∂μ .

In accordance with the coproduct formula (8.44) the differential operator L �
u

satisfies the deformed Leibniz rule

L �
u (h�g) = L �

u (h)�g+R
α(h)�L �

Rα (u)(g) . (8.49)

Indeed recalling that u = uμ �∂μ = uμ∂μ we have

L �
u (h�g) = uμ �∂μ(h�g) = uμ �∂μ(h)�g+uμ �h�∂μ(g)

= L �
u (h)�g+R

α(h)�Rα(uμ)�∂μ(g)

= L �
u (h)�g+R

α(h)�L �
Rα (u)(g) . (8.50)

From (8.48) it is also immediate to check the compatibility condition

L �
f�u(h) = f �L �

u (h) (8.51)

2 Notice that because of the antisymmetry of θμν we have R
α(u)Rα = Rα R

α(u). Since S�(∂ν ) =
−∂ν it is then easy to prove that S2

� = id. It is also easy to check that μ(S⊗ id)Δ(u) = μ(id ⊗
S)Δ(u) = ε(u)1 = 0. This last property uniquely defines the antipode.
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that shows that the action L � is the one compatible with the A� module structure of
vector fields.

The action L � of Ξ� on A� can be extended to all UΞ�. We recall that the action
of UΞ on the space of functions can be defined by extending the Lie derivative. For
any function h∈A = Fun(M), we define the Lie derivative of a product of generators
u...vz in UΞ to be the composition of the Lie derivatives of the generators,

(u...vz)(h) = u(. . . v(z(h))...) . (8.52)

Then by linearity we know the Lie derivative along any element ξ of UΞ . We then
define

L �
ξ (h) := f

α(ξ )(fα(h)) . (8.53)

The map L � is an action of UΞ� on A�, i.e., it represents the algebra UΞ� as differ-
ential operators on functions because

L �
u (L �

v (h)) = L �
u�v(h) . (8.54)

�-Lie algebra of vector fields Ξ�. We now turn our attention to the issue of de-
termining the Lie algebra Ξ� of UΞ�. In the undeformed case the Lie algebra of
the universal enveloping algebra UΞ is the linear subspace Ξ of UΞ of primitive
elements, i.e., of elements u that have coproduct:

Δ(u) = u⊗1+1⊗u . (8.55)

Of course Ξ generates UΞ and Ξ is closed under the usual commutator bracket [ , ],

[u,v] = uu− vu ∈ Ξ for all u,v ∈ Ξ . (8.56)

The geometric meaning of the bracket [u,v] is that it is the adjoint action of Ξ on Ξ ,

[u,v] = adu v, (8.57)

adu v := u1vS(u2), (8.58)

where we have used the notation Δ(u) = u1 ⊗ u2, where a sum over u1 and u2 is
understood. Recalling that Δ(u) = u⊗1+1⊗u and that S(u) =−u, from (8.58) we
immediately obtain (8.57). In other words, the commutator [u,v] is the Lie derivative
of the left invariant vector field u on the left invariant vector field v. More in general
the adjoint action of UΞ on UΞ is given by

adξ ζ = ξ1ζS(ξ2) , (8.59)

where we used the notation (sum understood)

Δ(ξ ) = ξ1 ⊗ξ2 .

For example, aduv ζ = [u, [v,ζ ]].
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In the deformed case the coproduct is no more cocommutative and we cannot
identify the Lie algebra of UΞ� with the primitive elements of UΞ , they are too
few.3 There are three natural conditions that according to [47] the �-Lie algebra of
UΞ� has to satisfy (see Chap. 7). It has to be a linear subspace Ξ� of UΞ� such that

i) Ξ� generates UΞ� , (8.60)

ii) Δ�(Ξ�) ⊂ Ξ� ⊗1+UΞ�⊗Ξ� , (8.61)

iii) [Ξ�,Ξ�]� ⊂ Ξ� . (8.62)

Property ii) implies a minimal deformation of the Leibniz rule. Property iii) is the
closure of Ξ� under the adjoint action:

[u,v]� = ad�
u v = u1� � v�S(u2�) , (8.63)

here we have used the coproduct notation Δ�(u) = u1� ⊗ u2� . More in general the
adjoint action is given by

ad�
ξ ζ := ξ1� �ζ �S�(ξ2�) , (8.64)

where we used the coproduct notation Δ�(ξ ) = ξ1� ⊗ξ2� .

In the case the deformation is given by a twist we have a natural candidate for
the Lie algebra of the Hopf algebra UΞ�. We apply the recipe (8.18) and deform the
Lie algebra product [ ] given in (8.39) into

[ ]� : Ξ ×Ξ → Ξ
(u,v) 
→ [u v]� := [fα(u) fα(v)] . (8.65)

In UΞ� this �-Lie bracket can be realized as a deformed commutator

[u v]� = [fα(u) fα(v)] = f
α(u)fα(v)− fα(v)fα(u)

= u� v−R
α(v)�Rα(u) . (8.66)

It is easy to see that the bracket [ ]� has the �-antisymmetry property

[u v]� = −[Rα(v) Rα(u)]� . (8.67)

This can be shown as follows:

[u v]� = [fα(u) fα(v)] = −[fα(v) f
α(u)] = −[Rα(v) Rα(u)]� .

3 This can already be seen at the semiclassical level, where we are left with the symplectic struc-
ture. Primitive elements then correspond to symplectic infinitesimal transformations. Instead of
restricting the set of transformations to those compatible with the bivector θμν we want to prop-
erly generalize/relax the notion of infinitesimal automorphism. In this way we do not consider θμν
as the components of a bivector, but as a set of constant coefficients.
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A �-Jacobi identity can be proven as well

[u [v z]�]� = [[u v]� z]� +[Rα(v) [Rα(u) z]�]� . (8.68)

The appearance of the R-matrix R−1 = R
α ⊗Rα is not unexpected. We have seen

that R−1 encodes the noncommutativity of the �-product h � g = R
α(g)� Rα(h) so

that h � g do R−1-commute. Then it is natural to define �-commutators using the
R−1 matrix. In other words, the representation of the permutation group to be used
on twisted noncommutative spaces is the one given by the R−1 matrix.

We now show that the subspace Ξ� (that as vector space equals Ξ ) has all the
three properties i), ii), iii). It satisfies i) because any sum of products of vector
fields in UΞ can be rewritten as sum of �-products of vector fields via the formula
uv = fα(u)� fα(v), and therefore �-vector fields generate the algebra. It obviously
satisfies ii), and finally in Appendix 8.8 we prove that it satisfies iii) by showing that
the bracket [u v]� is indeed the adjoint action, ad�

uv = [u v]�.

We stress that the geometrical – and therefore physical – interpretation of Ξ� as
infinitesimal diffeomorphisms is due to the deformed Leibniz rule property ii) and
to the closure of Ξ� under the adjoint action. Property ii) will be fundamental in
order to define covariant derivatives (cf. (8.102)).

Note 8.4 The Hopf algebra UΞ� can be described via the generators Xu := fα(u)fα
rather than via the u generators. The action of Xu on functions is the differential
operator X�

u ≡ L �
Xu

, we have X�
u ( f ) ≡ L �

Xu
( f ) = u( f ), compare with Chap. 1,

Sect. 1.5 and Chap. 3, Sect. 3.2, see also Eq. (5.2) in [15]. The generators Xu

satisfy the commutation relations Xu � Xv −Xv � Xu = X[u,v] and their coproduct is
Δ�(Xu) = F (Xu ⊗1+1⊗Xu)F−1. We see that UΞ� is the abstract Hopf algebra of
diffeomorphisms considered in [15], end of Sect. 5. Since the elements Xu generate
UΞ�, invariance under the diffeomorphisms algebra UΞ� is equivalently shown by
proving invariance under the Xu or the u generators. Since X∂μ = ∂μ partial deriva-
tives belong to both sets of generators. We also have L �

∂μ ( f ) = ∂μ( f ) = ∂ �
μ f .

�-Infinitesimal transformations. In the commutative case the diffeomorphisms
algebra UΞ acts on the algebra of functions and more in general on the algebra of
tensor fields via the Lie derivative. The Riemann curvature, the Ricci tensor, and
the curvature scalar are tensors and therefore they transform covariantly under the
diffeomorphisms action. In the twisted case, the �-diffeomorphisms algebra UΞ�

acts on the �-algebra of functions A� and more in general on the �-algebra of tensor
fields T�. The action on functions is given by the �-Lie derivative defined in (8.47).
Similarly the action on tensors is given, according to (8.18), by

L �
u (τ) := f

α(u)(fα(τ)) . (8.69)
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This expression defines an action because L �
u (L �

v (τ)) = L �
u�v(τ) . In particular the

�-Lie derivative is a representation of the �-Lie algebra of infinitesimal diffeomor-
phisms Ξ�,

L �
u L �

v −L �
Rα (v) L

�
Rα (u) = L �

[u v]� , (8.70)

where L �
u L �

v = L �
u ◦L �

v is the usual composition of operators. The coproduct in
UΞ is compatible with the product in the tensor fields algebra because

L �
u (τ⊗� τ ′) = L �

u (τ)� τ ′ +R
α(τ)�L �

Rα (u)(τ
′) . (8.71)

In Sect. 8.4 we introduce the noncommutative Riemann tensor and Ricci curva-
ture and show that they are indeed tensors. Then they transform covariantly under
the action of the �-diffeomorphism algebra. The corresponding noncommutative
Einstein equations satisfy the symmetry principle of noncommutative general co-
variance, i.e., they are covariant under �-diffeomorphism symmetry.

8.2.3.1 Relation between UΞ� and UΞF

In the previous four pages, using the twist F and the general prescription (8.18) we
have described the Hopf algebra

(UΞ�,�,Δ�,S�,ε)

and its Lie algebra (Ξ�, [ ]�). These are a deformation of the cocommutative Hopf
algebra

(UΞ , ·,Δ ,S,ε)

and its Lie algebra (Ξ , [ ] ). Usually given a twist F one deforms the Hopf algebra
(UΞ , ·Δ ,S,ε) into the Hopf algebra

(UΞF , ·,ΔF ,SF ,ε)

where the coproduct is deformed via

ΔF (ξ ) := FΔ(ξ )F−1 , (8.72)

while product, antipode, and counit are undeformed ·F = · ,SF = S ,εF = ε (SF =
S only for abelian antisymmetric twists).

The Hopf algebras UΞ� and UΞF are isomorphic, as vector spaces UΞ� =UΞ =
UΞF . The Hopf algebra isomorphism is given by the linear map D : UΞ� →UΞ�

D(ξ ) = f
α(ξ )fα . (8.73)

The inverse of the map D is

D−1 ≡ X : ξ 
−→ Xξ = fα(ξ )fα ,
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indeed D(Xξ ) = f
β (fα(ξ )fα)fβ = f

β (fα(ξ ))fα fβ = (fβ fα)(ξ ) fα fβ = ξ where
we used that partial derivatives commute among themselves and in the last line we
used F−1F = 1⊗1. Explicitly the Hopf algebra isomorphisms between UΞ� and
UΞF is [16]

D(ξ �ζ ) = D(ξ )D(ζ ) , (8.74)

Δ� = (D−1 ⊗D−1)◦ΔF ◦D , (8.75)

S� = D−1 ◦SF ◦D . (8.76)

Under this isomorphism the Lie algebra Ξ� is mapped into the Lie algebra ΞF :=
D(Ξ�) of all elements

uF := D(u) = f
α(u)fα .

The bracket in ΞF is the deformed commutator

[uF ,vF ]F = uF vF −R
α(vF )Rα(uF ) (8.77)

and it equals the adjoint action in UΞF ,

[uF ,vF ]F = adF
uF vF = uF

1F
vS(uF

2F
) , (8.78)

where we used the notation ΔF (ξ ) = ξ1F
⊗ξ2F

. The usual Lie algebra Ξ of vector
fields with the usual bracket [u,v] = uv− vu is not properly a Lie algebra of UΞF

because the commutator fails to be the adjoint action and the Leibniz rule is not of
the type ii). In particular the vector fields u have not the geometric interpretation of
infinitesimal diffeomorphisms.

8.2.4 Twisted versus spontaneously broken symmetries

Given the deformation A� = Fun�(M) of the algebra of functions A = Fun(M), one
can

• consider the derivations of Fun�(M), i.e., the infinitesimal transformations of
Fun�(M) that satisfy the usual Leibniz rule, u(h � g) = u(h) � g + h � u(g). As
is easily seen expanding in power series of θμν , these maps are only the vector
fields that leave invariant the Poisson tensor (8.6). Thus while in the commu-
tative case any vector field is a derivation, in the deformed case the space of
derivations is smaller. This is the usual viewpoint, considered for example in the
quantization deformation paper [48]. This viewpoint for our purposes is too re-
strictive, for example, infinitesimal Poincaré transformations are not derivations.
In this approach we have that Poincaré invariance is spontaneously broken by the
presence of (the background field) θμν .
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• consistently deform the notion of derivation so that to any infinitesimal transfor-
mation of Fun(M) there corresponds one and only one deformed infinitesimal
derivation. This is what we have achieved with the map Lu → L �

u , where L �
u

satisfies the deformed Leibniz rule (7.55). This is the quantum groups and quan-
tum spaces approach [9, 12, 18, 49]. The bonus of this approach is that instead
of dealing with a spontaneously broken diffeomorphisms (or Poincaré) symme-
try we have an unbroken quantum diffeomorphisms (or Poincaré) symmetry. In
this way we retain a symmetry property that is as strong as the one of commu-
tative spacetime. This is doable if the �-product deformation of Fun(M) can be
obtained from a twist. This is the twisted symmetry approach.

These two approaches coexist and are equally tenable viewpoints in order to
understand the infinitesimal transformation of the star product of two functions f �g
(more in general of fields).

Let us consider F = e−
i
2 θ

abXa⊗Xb with a,b = 0, . . . ,3 and Xa globally defined and
mutually commuting vector fields (for example, X0 = ∂0, X1 = ∂1, X2 = ∂2, X3 = ∂3).
The deformed coproduct ΔF (u) absorbs exactly the variation [u,Xa] under u of the
vector fields Xa present in the star product f � g. In the first approach we say that
Xa (or θ abXa ⊗Xb) changes under the infinitesimal transformation generated by u.
Thus u is the generator of a broken symmetry. In the second approach the change in
Xa is reinterpreted as a change in the Leibniz rule for u. Now Xa does not change,
therefore u is indeed a symmetry transformation of the Hopf algebra UΞF .

The reader can check these two viewpoints with an explicit calculation by ex-
panding in power series of θ , or with the following one

u( f �g) = u(f γ( f )f γ(g))

= u1(f
γ( f ))u2(f γ(g)) (8.79)

= (fα fβu1f
γ)( f )(fα fβu2f γ)(g)

= uF
1 ( f )uF

2 (g), (8.80)

where we used Sweedler’s notation (sum over the indices 1 and 2 understood)

Δ(u) = u1 ⊗u2 = u⊗1+1⊗u , ΔF (u) = FΔ(u)F−1 = uF
1 ⊗uF

2 ,

and in the third equality we inserted 1⊗1 = F−1F = f
α

fβ ⊗ fα fβ .

In (8.79) the Leibniz rule is undeformed, but u1 and u2 act also on F−1. In
(8.80) the Leibniz rule is deformed and uF

1 , uF
2 act directly on f and g and not on

the �-product.
It is using this second approach, and the symmetry described by the Hopf alge-

bra UΞ� that is isomorphic to UΞF , that we are able to construct a gravity theory.
The point is that this twisted symmetry approach holds only as long as the vector
fields Xa enter the formalism just inside the �-product. This is precisely what we
want. This approach is therefore more powerful because among the different spon-
taneously broken theories (θ �= 0) it singles out those where θ enters only through
the star product.
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A related issue is that of the construction of conserved currents associated with
noncommutative spacetime symmetries. A noncommutative Noether procedure is
presently missing and further work is required in this direction. Here we just men-
tion that in the usual undeformed gravity we have the covariant conservation of
the Einstein tensor Ricμν − 1

2 gμνR. This is a consequence of the Bianchi identity
for the curvature tensor, an identity that can also be proven in the noncommutative
case with arbitrary twist F [27] (not necessarily a twist which is invariant under
spacetime translations).

On the other hand, even if the action functional of scalar field theories on
flat noncommutative four-dimensional Minkowski spacetime is invariant under de-
formed Poincaré transformations (see [15] Sect. 6), accordingly with [50] the
presently known way to construct a conserved angular momentum tensor is to en-
hance the noncommutativity parameter θμν(x) to a dynamical field [51].

The difference between the scalar field theory case and the gravity case may
reside in the different ways the two theories are constructed. In the gravity case
the noncommutative diffeomorphisms dictate the field equations. In the scalar case
the theory is obtained from the commutative one by replacing the usual product of
fields with the �-product, this procedure is less geometric and might be responsible
for the present absence of the conserved currents associated with deformed Lorentz
rotations. A first step toward a deeper understanding of the open issue of the Noether
theorem in noncommutative spacetimes is that of gaining a good command of the
notion of infinitesimal symmetry transformation and in particular of infinitesimal
Poincaré transformation. As we show in the next section this is a well-understood
notion.

8.3 Poincaré symmetry

The considerations about the undeformed Hopf algebra UΞ and the Hopf algebras
UΞ� and UΞF hold independently from Ξ being the Lie algebra of infinitesimal
diffeomorphisms. In this section we study the case of the deformed Poincaré alge-
bra. It can be seen as an abstract algebra or also as a subalgebra of infinitesimal
diffeomorphisms Ξ .

8.3.1 �-Poincaré algebra

We start by recalling that the usual Poincaré Lie algebra iso(3,1):

[Pμ ,Pν ] = 0 ,

[Pρ ,Mμν ] = i(ηρμPν −ηρνPμ) , (8.81)

[Mμν ,Mρσ ] = −i(ημρMνσ −ημσMνρ −ηνρMμσ +ηνσMμρ) , (8.82)
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is not a symmetry of θ -noncommutative space because the relations

xμ � xν − xν � xμ = iθμν (8.83)

are not compatible with Poincaré transformations. Indeed consider the standard rep-
resentation of the Poincaré algebra on functions h(x),

Pμ(h) = i∂μ(h) , Mμν(h) = i(xμ∂ν − xν∂μ)(h) , (8.84)

then we have Mρσ (θμν) = 0 while Mρσ (xμ � xν − xν � xμ) �= 0. This is so because
we use the undeformed Leibniz rule Mρσ (xμ � xν − xν � xμ) = Mρσ (xμ)� xν + xμ �
Mρσ (xν). In other words the Hopf algebra U(iso(3,1)) generated by the Poincaré
Lie algebra and with usual coproducts

Δ(Pμ) = Pμ ⊗1+1⊗Pμ , Δ(Mμν) = Mμν ⊗1+1⊗Mμν (8.85)

is not a symmetry of noncommutative spacetime.

One approach to overcome this problem is to just deform the coproduct Δ into
the new coproduct ΔF (Mμν) = FΔ(Mμν)F−1 (see next section).

Another approach is to observe first that the action of Mρσ on h � g is hybrid,
indeed it mixes ordinary products with �-products: Mμν(h � g) = ixμ∂ν(h � g)−
ixν∂μ(h�g). This is cured by considering a different action of the generators Pμ and
Mμν on noncommutative spacetime. The L � action defined in (8.47), accordingly
with the general prescription (8.18), exactly replaces the ordinary product with the
�-product. For any function h(x) we have,

L �
Pμ (h) = i∂μ(h)

L �
Mμν (h) = ixμ �∂ν(h)− ixν �∂μ(h) . (8.86)

This action of the Poincaré generators on functions can be extended to an action
of the universal enveloping algebra U(iso(3,1)) if U(iso(3,1)) is endowed with the
new �-product

ξ �ζ := f
α(ξ )fα(ζ ) (8.87)

= ∑ 1
n!

(
−i
2

)n

θρ1σ1 . . .θρnσn [Pρ1 . . . [Pρn ,ξ ]...] [Pσ1 . . . [Pσn ,ζ ]...] ,

for all ξ and ζ in U(iso(3,1)). For example, it is easy to see that

L �
Mμν�Mρσ (h) = L �

Mμν (L
�

Mρσ (h)) . (8.88)

In formula (8.87) we have identified the Lie algebra of partial derivatives with the
Lie algebra of momenta Pμ , so that

F = e
i
2 θ

μνPμ⊗Pν , R−1 = eiθμνPμ⊗Pν . (8.89)
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This identification is uniquely fixed by the representation (8.84): Pμ = i∂μ . Since
products of the generators Pμ and Mμν can be rewritten as sum of �-products via
the formula ξζ = fα(ξ ) � fα(ζ ), the elements Pμ and Mμν generate the algebra
U�(iso(3,1)).

The coproduct compatible with noncommutative spacetime is inferred from the
Leibniz rule

xμ �∂ν(h�g) = xμ �∂ν(h)�g+ xμ �h�∂ν(g)

= xμ �∂ν(h)�g+R
α(h)�Rα(xμ)�∂ν(g) . (8.90)

The coproduct that implements this Leibniz rule is (cf. (8.44))

Δ�(Mμν) = Mμν ⊗1+R
α ⊗Rα(Mμν) . (8.91)

Explicitly the coproduct on the generators Pμ and Mμν reads

Δ�(Pμ) = Pμ ⊗1+1⊗Pμ ,

Δ�(Mμν) = Mμν ⊗1+1⊗Mμν + iθαβPα ⊗ [Pβ ,Mμν ] . (8.92)

The counit and antipode on the generators can be calculated from (8.45) and (8.46),
they are given by

ε(Pμ) = ε(Mμν) = 0 ,

S�(Pμ) = −Pμ , S�(Mμν) = −Mμν − iθρσ [Pρ ,Mμν ]Pσ . (8.93)

We have constructed the Hopf algebra U�(iso(3,1)).

We recall that there are three natural conditions that the �-Poincaré Lie algebra
iso�(3,1) has to satisfy. It has to be a linear subspace of U�(iso(3,1)) such that if
{ti}i=1,...,n is a basis of iso�(3,1), we have (sum understood on repeated indices)

i) {ti} generates U�(iso(3,1))

ii) Δ�(ti) = ti ⊗1+ fi
j ⊗ t j

iii) [ti, t j]� = Ci j
ktk

where Ci j
k are structure constants and fi

j ∈U�(iso(3,1)) (i, j = 1, ...,n). In the last
line the bracket [ , ]� is the adjoint action (we use the notation Δ�(t) = t1� ⊗ t2�) :

[t, t ′]� := ad�
t t ′ = t1� � t ′ �S�(t2�) . (8.94)

We have seen that the elements Pμ and Mμν generate U�(iso(3,1)). They are de-
formed infinitesimal generators because they satisfy the Leibniz rule ii) and because
they close under the adjoint action iii). In order to prove property iii) we perform a
short calculation and obtain the explicit expression of the adjoint action (8.94),
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[Pμ ,Pν ]� = [Pμ ,Pν ] ,

[Pρ ,Mμν ]� = [Pρ ,Mμν ] = −[Mμν ,Pρ ]� ,

[Mμν ,Mρσ ]� = Mμν �Mρσ −Mρσ �Mμν − iθαβ [Pα ,Mρσ ][Pβ ,Mμν ] = [Mμν ,Mρσ ] .

Notice that this result shows that the adjoint action (8.94) equals the deformed com-
mutator

t � t ′ −R
α(t ′)�Rα(t) .

Property iii), i.e., closure under the adjoint action, explicitly reads

[Pμ ,Pν ]� = 0 ,

[Pρ ,Mμν ]� = i(ηρμPν −ηρνPμ) ,

[Mμν ,Mρσ ]� = −i(ημρMνσ −ημσMνρ −ηνρMμσ +ηνσMμρ) . (8.95)

We notice that the structure constants are the same as in the undeformed case; how-
ever, the adjoint action [Mμν ,Mρσ ]� is not the commutator Mμν � Mρσ − Mρσ �
Mμν anymore, it is a deformed commutator quadratic in the generators and �-
antisymmetric.

From (8.95) we immediately obtain the �-Jacobi identities:

[t , [t ′, t ′′]� ]� +[t ′ , [t ′′, t]� ]� +[t ′′ , [t, t ′]� ]� = 0 , (8.96)

for all t, t ′, t ′′ ∈ iso�(3,1).

It can be proven that the Hopf algebra U�(iso(3,1)) is the algebra freely gener-
ated by Pμ and Mμν (we denote the product by �) modulo the relations iii).

Note 8.5 In [32] we studied quantum Poincaré groups (in any dimension) obtained
via abelian twists F different from the one considered here. Their Lie algebra is de-
scribed according to i), ii), iii) (see for example Eqs. (6.65), (7.36), (7.6) and (7.7)
in the first paper in [32, 33]). Because of these three properties the Lie algebra de-
fines a differential calculus on the quantum Poincaré group manifold that respects
the quantum Poincaré symmetry, (i.e., that is bicovariant).

8.3.2 Twisted Poincaré algebra

The Poincaré Hopf algebra UF (iso(3,1)) is another deformation of U(iso(3,1)), as
algebras UF (iso(3,1)) = U(iso(3,1)); but UF (iso(3,1)) has the new coproduct

ΔF (ξ ) = FΔ(ξ )F−1 , (8.97)

for all ξ ∈ U(iso(3,1)). In Sect. 7.7 we wrote the explicit expression for ΔF (Pμ)
and ΔF (Mμν), see Eqs. (7.93). The Hopf algebra UF (iso(3,1)) is the algebra
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generated by Mμν and Pμ modulo the relations (8.81), and with coproduct (7.93) and
counit and antipode that are as in the undeformed case (see the explicit expressions
(7.94)). This Hopf algebra is a symmetry of noncommutative spacetime provided
that we consider the “hybrid” action Mμν(h�g) = ixμ∂ν(h�g)− ixν∂μ(h�g).

There is a canonical procedure in order to obtain the Lie algebra isoF(3,1) of
UF (iso(3,1)). We use the Hopf algebra isomorphism (8.73)

D : U�(iso(3,1)) → UF (iso(3,1))

ξ 
→ f
α(ξ )fα

and define
isoF (3,1) := D(iso�(3,1)) .

The elements

PF
μ := f

α(Pμ)fα = Pμ , (8.98)

MF
μν := f

α(Mμν)fα = Mμν −
i
2
θρσ [Pρ ,Mμν ]Pσ

= Mμν +
1
2
θρσ (ημρPν −ηνρPμ)Pσ (8.99)

are generators of the quantum Lie algebra isoF (3,1). Their explicit quantum Lie
algebra structure as well as their coproduct is given in Sect. 7.7.

8.4 Covariant derivative, torsion, and curvature

The noncommutative differential geometry set up in the previous sections allows to
develop the formalism of covariant derivative, torsion, and curvature just by follow-
ing the usual classical formalism.

On functions the covariant derivative equals the Lie derivative. Requiring that
this holds in the �-noncommutative case as well we immediately know the action
of the �-covariant derivative on functions, and in particular the Leibniz rule it has
to satisfy. More in general we define the �-covariant derivative ��

u along the vector
field u ∈ Ξ� to be the linear map ��

u : Ξ� → Ξ� such that for all u,v,z ∈ Ξ�, h ∈ A�:

��
u+vz = ��

uz+��
vz , (8.100)

��
h�uv = h���

uv , (8.101)

��
u(h� v) = L �

u (h)� v+R
α(h)���

Rα (u)v . (8.102)
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Notice that in the last line we have used the coproduct formula (8.44), Δ�(u) =
u ⊗ 1 + R

α ⊗ Rα(u). Epression (8.102) is well defined because Rα(u) is again a
vector field.

The (noncommutative) connection coefficients Γμνσ are given by

��
μ∂ν = Γμνσ �∂σ = Γμνσ ∂σ , (8.103)

where ��
μ = ��

∂μ . They uniquely determine the connection, indeed let z = zμ � ∂μ ,

u = uν �∂ν , then

��
z u = zμ ���

μ(uν �∂ν)
= zμ �∂μ(uν)∂ν + zμ �uν ���

μ∂ν
= zμ �∂μ(uν)∂ν + zμ �uν �Γμνσ ∂σ ; (8.104)

these equalities are equivalent to the connection properties (8.101) and (8.102).
The covariant derivative is extended to tensor fields using the deformed Leibniz

rule
��

u(v⊗� z) = ��
u(v)⊗� z+R

α(v)⊗� ��
Rα (u)z .

Requiring compatibility of the covariant derivative with the contraction operator
gives the covariant derivative on 1-forms, we have ��

z = zμ ���
μ , and

��
μ(ωρdxρ) = ∂μ(ωρ)dxρ −Γμρν �ων dxρ . (8.105)

The torsion T and the curvature R associated with a connection �� are the linear
maps T : Ξ� ×Ξ� → Ξ� and R� : Ξ� ×Ξ� ×Ξ� → Ξ� defined by

T(u,v) := ��
uv−��

Rα (v)Rα(u)− [u v]� , (8.106)

R(u,v,z) := ��
u��

vz−��
Rα (v)�

�
Rα (u)z−��

[uv]�z , (8.107)

for all u,v,z ∈ Ξ�. From the antisymmetry property of the bracket [ ]�, see (8.67),
it easily follows that the torsion T and the curvature R have the following �-
antisymmetry property

T(u,v) = −T(Rα(v),Rα(u)) ,

R(u,v,z) = −R(Rα(v),Rα(u),z) .

The presence of the R-matrix in the definition of torsion and curvature ensures that
T and R are left A�-linear maps [16], i.e.,

T( f �u,v) = f �T(u,v) , T(∂μ , f � v) = f �T(∂μ ,v)
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(for any ∂μ ), and similarly for the curvature. We have seen that any left A�-linear
map Ξ� → A� is identified with a tensor, and precisely a 1-form (recall comments
after (8.37)). Similarly the A�-linearity of T and R ensures that we have well defined
the torsion tensor and the curvature tensor.

One can also prove (twisted) first and second Bianchi identities [16, 27].

The coefficients Tμν
ρ and Rμνρ

σ with respect to the partial derivatives basis
{∂μ} are defined by

T(∂μ ,∂ν) = Tμν
ρ∂ρ , R(∂μ ,∂ν ,∂ρ) = Rμνρ

σ∂σ , (8.108)

and they explicitly read

Tμν
ρ = Γμνρ −Γνμρ ,

Rμνρ
σ = ∂μΓνρσ −∂νΓμρσ +Γνρβ �Γμβ σ −Γμρβ �Γνβ σ . (8.109)

As in the commutative case the Ricci tensor is a contraction of the curvature
tensor,

Ricμν = Rρμν
ρ . (8.110)

A definition of the Ricci tensor that is independent from the {∂μ} basis is also
possible [16].

8.5 Metric and Einstein equations

In order to define a �-metric we need to define �-symmetric elements in Ω� ⊗�

Ω�. Recalling the �-antisymmetry of the wedge �-product (8.30) we see that �-
symmetric elements are of the form

ω⊗�ω ′ +R
α(ω ′)⊗� Rα(ω) . (8.111)

In particular any symmetric tensor in Ω ⊗Ω ,

g = gμνdxμ ⊗dxν , (8.112)

gμν = gνμ , is also a �-symmetric tensor in Ω� ⊗�Ω� because

g = gμνdxμ ⊗dxν = gμν �dxμ ⊗� dxν , (8.113)

and the action of the R-matrix is the trivial one on dxν . We denote by g�μν the star
inverse of gμν ,

g�μρ �gρν = gνρ �g�ρμ = δ μν . (8.114)

The metric gμν can be expanded order by order in the noncommutative parameter
θρσ . Any commutative metric is also a noncommutative metric, indeed the �-inverse
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metric can be constructed order by order in the noncommutativity parameter (see
also Sect. 3.4). Contrary to [9, 52], we see that in our approach there are infinitely
many metrics compatible with a given noncommutative differential geometry, non-
commutativity does not single out a preferred metric.

A connection that is metric compatible is a connection that for any vector field u
satisfies, ��

ug = 0, this is equivalent to the equation

��
μgρσ −Γμρν �gνσ −Γμσν �gρν = 0 . (8.115)

We permute the indices in this expression, use the symmetry gμν = gνμ , and add
the corresponding equations to obtain

Γμνρ �gρσ =
1
2
(∂μgνσ +∂νgσμ −∂σgμν). (8.116)

We therefore obtain that there is a unique torsion-free metric-compatible connection.
It is given by

Γμνρ =
1
2
(∂μgνσ +∂νgσμ −∂σgμν)�g�σρ . (8.117)

We now construct the curvature tensor and the Ricci tensor using this uniquely
defined connection. Finally the noncommutative version of Einstein equations (in
vacuum) is

Ricμν = 0, (8.118)

where the dynamical field is the metric g.

Appendix

8.6 Differential operators and vector fields

We briefly describe the algebra of differential operators and show that it is not a
Hopf algebra by relating it to the Hopf algebra of vector fields.

Differential operators on the space of functions A = Fun(R4) are elements of the
form f (x)μ1...μn∂μ1 . . .∂μn . They form an algebra, the only nontrivial commutation
relations are between functions and partial derivatives,

∂μ f = ∂μ( f )+ f∂μ , (8.119)

where both ∂μ and f act on functions (the action of f on the function h is given
by the product f h). Differential operators of zeroth order are functions. Differential
operators of first order Diff 1 are derivations of the algebra A of functions (i.e., they
satisfy the Leibniz rule); they are therefore vector fields Ξ (infinitesimal local dif-
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feomorphisms4). The isomorphism between vector fields and first-order differential
operators is given by the Lie derivative

L : Ξ → Diff 1

v 
→ Lv, (8.120)

where
Lv( f ) = v( f ) .

We use the notation Lv in order to stress that the abstract Lie algebra element v ∈ Ξ
is seen as a differential operator. The Lie derivative can be extended to a map from
the universal enveloping algebra of vector fields UΞ to all differential operators

L : Ξ → Diff

uv...z 
→ Lu Lv ...Lz. (8.121)

Notice that on the left-hand side the product uv is in UΞ (recall the paragraph after
(8.40)), while on the right-hand side the product Lu Lv = Lu ◦ Lv is the usual
composition product of operators.

The map L is an algebra morphism between the algebras UΞ and Diff. It is not
surjective because the image of UΞ does not contain the full space of functions A
but only the constant ones (the multiples of the unit of UΞ ).

In order to show that the map L : UΞ → Diff is not injective we consider the
vector fields

u = f∂μ , v = ∂ν ,

u′ = f∂ν , v′ = ∂μ ,

where for example f = xν , and we show that

uv �= u′v′ in UΞ . (8.122)

The map L is then not injective because f∂μ(∂ν(h)) = f∂ν(∂μ(h)) for any function
h implies

Luv = Lu′v′ .

The algebra UΞ is a Hopf algebra, in particular there is a well-defined coprod-
uct map Δ , and therefore one way to prove the inequality (8.122) is to prove that
Δ(uv) �= Δ(u′v′). We calculate

Δ(uv) = Δ(u)Δ(v) = uv⊗1+u⊗ v+ v⊗u+1⊗uv

= f∂μ ∂ν ⊗1+ f∂μ ⊗∂ν +∂ν ⊗ f∂μ +1⊗ f∂μ ∂ν ,

4 Infinitesimal diffeomorphisms correspond to complete vector fields. If the manifold is not com-
pact vector fields are not necessarily complete, then they only give rise to a local one parameter
group of local diffeomorphisms.
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and

Δ(u′v′) = f∂ν ∂μ ⊗1+ f∂ν ⊗∂μ +∂μ ⊗ f∂ν +1⊗ f∂ν ∂μ . (8.123)

These two expressions are different. For example, by applying the product map in
UΞ , · : UΞ⊗UΞ →UΞ and then the map L : UΞ →Diff we, respectively, obtain

3 f∂μ ∂ν +∂ν f∂μ �= 3 f∂ν ∂μ +∂μ f∂ν . (8.124)

From this proof we conclude that we cannot equip the algebra of differential
operators Diff with a coproduct like the one in UΞ . The map defined by Δ(Lu) =
Lu⊗1+1⊗Lu and extended multiplicatively to all Diff is not well defined because
Luv = Lu′v′ , while

Δ(Luv) = Δ(Lu)Δ(Lv) �= Δ(Lu′)Δ(Lv′) = Δ(Lu′v′) ,

as is easily seen by applying the product in Diff , ◦ : Diff ⊗Diff → Diff (we obtain
again (8.124)).

8.7 Proof that the coproduct Δ� is coassociative

We have to prove that

(Δ� ⊗ id)Δ�(u) = (id ⊗Δ�)Δ�(u) .

The left-hand side explicitly reads

(Δ� ⊗ id)Δ�(u) = (Δ� ⊗ id)(u⊗1+R
α ⊗Rα(u))

= u⊗1⊗1+R
β ⊗Rβ (u)⊗1+Δ�(R

α)⊗Rα(u) .

The right-hand side is

(id ⊗Δ�)Δ�(u) = u⊗Δ�(1)+R
α ⊗Δ�(Rα(u))

= u⊗1⊗1+R
α ⊗Rα(u)⊗1+R

α ⊗R
γ ⊗RγRα(u) .

These two expressions coincide because

Δ�(R
α)⊗Rα = e−iθμνΔ�(∂μ )⊗∂ν = e−iθμν (∂μ⊗1⊗∂ν+1⊗∂μ⊗∂ν )

= R
α ⊗R

γ ⊗RγRα . (8.125)
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8.8 Proof that the bracket [u v]� is the adjoint action

We have to prove that
[u v]� = ad�

uv .

We know that the bracket [u v]� equals the deformed commutator

[u v]� = u� v−R
α(v)�Rα(u) .

On the other hand, the adjoint action reads

ad�
uv = u1� � v�S�(u2�) = u� v+R

α
� v�S�(Rα(u))

= u� v−R
α

� v�R
β (Rα(u))Rβ .

Now the property
∂μ � v = ∂μ v = ∂μ(v)+ v∂μ , (8.126)

that using the coproduct Δ�(∂μ) ≡ ∂μ1�
⊗∂μ2�

= ∂μ ⊗1+1⊗∂μ can be written as

∂μ � v = ∂μ v = ∂μ1�
(v)∂μ2�

,

implies
R
α

� v = R
α

v = R
α
1�

(v)R
α
2�

.

The coproduct formula (8.125) then implies

R
α

� v�R
β (Rα(u))Rβ = R

α(v)Rγ �R
β ((RγRα)(u))Rβ

= R
α(v)�R

β ((RγRα)(u))RβR
γ

= R
α(v)� (RβRγRα)(u)RβR

γ

= R
α(v)�Rα(u),

where in the second equality we iterated property (8.126) (with R
β ((RγRα)(u))Rβ

instead of v) and used the antisymmetry of θμν in order to cancel the first addend

in (8.126). In the last equality we used that R
β

Rγ ⊗RβR
γ = R−1R = 1⊗1 because

of the antisymmetry of θμν .
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Chapter 9
Twist Deformations of Quantum Integrable
Spin Chains

Petr Kulish

Twist deformations of spacetime lead to deformed field theories with twisted sym-
metries. Twisted symmetries are quantum group symmetries. Most integrable spin
systems have dynamical symmetries related to appropriate quantum groups. We dis-
cuss the changes of the properties of these systems under twist transformations of
quantum groups. A main example is the isotropic Heisenberg spin chain and the
jordanian twist of the universal enveloping algebra of sl(2). It is shown that the
spectrum of the XXX spin chain is preserved under the twist deformation while the
structure of the eigenstates depends on the choice of boundary conditions. Another
example is provided by abelian twists, these give physical deformations of closed
spin chains corresponding to higher rank Lie algebras, e.g., gl(n). The energy spec-
trum of these integrable models is changed and correspondingly their eigenvectors.

9.1 Introduction

One of the cornerstone of the quantum inverse scattering method was the isotropic
Heisenberg spin chain [1] exactly solved by H. Bethe [2]. The development of the
quantum inverse scattering method (QISM) [3–7], as an approach to the construc-
tion and solution of quantum integrable systems, has led to the foundations of the
theory of quantum groups [8–11]. Both in QISM and in quantum groups a funda-
mental, defining object is the R-matrix. V. Drinfel’d introduced an important trans-
formation of quantum groups: a twist of coproduct map. The R-matrix is changed
under Drinfel’d twist transformations. We would like to discuss the corresponding
changes in integrable models taking as examples the isotropic XXX (9.1) and the
anisotropic XXZ spin chains (9.20). These systems are more elementary than the
field theories on noncommutative spaces discussed in the previous chapters. The
aim is to see what kinds of modifications on these physical systems are produced by
twisting their underlying symmetry structures.

Kulish, P.: Twist Deformations of Quantum Integrable Spin Chains. Lect. Notes Phys. 774, 165–188 (2009)
DOI 10.1007/978-3-540-89793-4 9 c© Springer-Verlag Berlin Heidelberg 2009
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To explain magnetic properties of solids in quantum theory a model of interacting
half-integer spins was proposed by W. Heisenberg in 1928 [1]. The hamiltonian of
the isotropic model (XXX spin chain) is given in terms of Pauli sigma matrices
σαk ,α = x,y,z; at each site k = 1,2, . . . ,N of a one-dimensional chain

HXXX =
N

∑
m=1

(
σ x

mσ x
m+1 +σ y

mσ
y
m+1 + (σ z

mσ z
m+1 −1)

)
− h

2

N

∑
m=1

σ z
m. (9.1)

The following periodic (κ = 1) or quasi-periodic (κ �= 1) boundary conditions are
imposed

σ z
N+1 = σ z

1, σ±
N+1 = κ±1σ±

1 , σ± =
1
2
(σ x ± iσ y).

(Often the quasi-periodic boundary conditions are referred to as the twisted ones,
but the word “twist” is reserved in this book for the theory of quantum groups.) The
hamiltonian in (9.1) is an operator in the Hilbert space of spin states

H =
N⊗

m=1

C
2
m ,

which is the tensor product of the two-dimensional Hilbert spaces associated with
each site of the chain m = 1,2, . . . ,N. The explicit form of these sigma matrices
σα ,α = x,y,z,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
, (9.2)

enables one to write the hamiltonian density for zero magnetic field h = 0 as a
permutation operator Pmm+1 of neighboring spaces C

2
m⊗C

2
m+1: P(v⊗w) = w⊗v,

where v,w ∈ C
2. Indeed

∑
α
σαmσαm+1 = 2Pmm+1 − Imm+1 ; (9.3)

here Imm+1 is the identity matrix. Taking the basis vectors of C
2 as e(+) =

(
1
0

)
,e(−) =(

0
1

)
, so that σ±e(±) = 0, and the basis vectors of C

2 ⊗C
2 as

e(+) ⊗ e(+) =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , e(+) ⊗ e(−) =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

e(−) ⊗ e(+) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , e(−) ⊗ e(−) =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ , (9.4)
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the permutation (flip) matrix is

P =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ . (9.5)

In terms of the permutation operators Pmm+1 the hamiltonian in (9.1), that from
now on we consider with zero magnetic field h = 0, reads

HXXX = 2
N

∑
m=1

(Pmm+1 − Imm+1) . (9.6)

HXXX is an element of the group algebra C[SN ] of the symmetric group SN (the
group of permutations of N objects). See (7.52) for the definition of group algebra
C[SN ]. One can rewrite this hamiltonian using raising σ+ and lowering σ− matri-
ces,

HXXX = 2
N

∑
m=1

(
σ+

m σ−
m+1 +σ−

m σ+
m+1 +

1
2
(σ z

mσ z
m+1 −1)

)
. (9.7)

Then it is easy to see that the tensor product state

Ω =
N⊗

k=1

e(+)
k =

N⊗

k=1

(
1
0

)

k
(9.8)

is an eigenvector of HXXX with zero eigenvalue Ω ,

HXXX Ω = 0.

This state Ω corresponds to all spins up, and it is called the ferromagnetic state.
The complete spectrum of the energy operator HXXX and its eigenvectors were

found by H. Bethe in 1931 [2]. Due to the obvious rotational invariance HXXX com-
mutes with the generators of rotations (global spin):

[HXXX ,Sα ] = 0, Sα =
1
2

N

∑
k=1

σαk , [Sα ,Sβ ] = iεαβγSγ . (9.9)

Hence, the Hilbert space of states H =
N⊗
1

C
2 can be decomposed into invariant

subspaces with fixed value of the third component Sz:

H =
N⊗
1

C
2 =

N⊕
M=0

H 1
2 N−M. (9.10)

Consider the shift operator U
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U = P1N . . .P13P12 =:
N−1

∏
k=1

P1k+1, Uσαk = σαk+1U . (9.11)

It commutes with the hamiltonian

[HXXX ,U ] = 0 . (9.12)

Then it is easy to see that the one-magnon state

Ψ(z) =
N

∑
k=1

zkσ−
k Ω (9.13)

is a common eigenvector of HXXX and U ,

UΨ(z) = z−1Ψ(z), HXXXΨ(z) = 2(z+ z−1 −2)Ψ(z), (9.14)

provided that the quasimomentum z satisfies the quantization condition

zN = 1, logz = 2πik/N, k = 1,2, . . . ,N −1. (9.15)

The module |z| is equal to 1. Hence the magnon energy is negative, and to find the
ground state with the lowest energy one needs to analyze states with many magnons.

Bethe’s proposal was to search for eigenvectors of HXXX in the form of the so-
called (coordinate) Bethe ansatz: a linear combination of products of one-magnon
states

Ψ(z1, . . . ,zM) = ∑
1≤n1<n2<...<nM≤N

∑
π∈SM

A
(
π,{z j}M

1

)
zn1
π(1)z

n1
π(2) . . .z

nM
π(M)

M

∏
j=1

σ−
n j
Ω .

(9.16)
Here z j are the quasimomenta of the M magnons, SM is the symmetric group with
M! elements {π}, and A(π,{z j}M

1 ) are the amplitudes depending on {z j}M
1 and π .

The description of a thermodynamic limit N → ∞ corresponding to an infinite
antiferromagnetic chain was given by L. Hulthen in 1938 [12].

The requirement is that the M magnon vector (9.16) is an eigenvector of HXXX ,
and the spin chain periodicity condition results in the explicit form of the coefficients
A(π;{z j}M

1 ) and the quantization conditions of quasimomenta {z j}M
1 (the so-called

Bethe equations):

zN
j =

M

∏
k �= j

z jzk +1−2z j

2zk − z jzk −1
, j = 1,2, . . . ,M. (9.17)

The corresponding energy is

EM =
M

∑
j=1

2(z j + z j
−1 −2). (9.18)
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The factors on the RHS of (9.17) are scalar two-magnon scattering matrices
S(z j, zk) = S(zk, z j)−1. A detailed deduction of these relations can be found
in monographs (e.g. [13–15]). We will obtain them using the QISM in the next
section.

There is also a different parameterization λ of quasimomenta

z(λ ) =
λ +η/2
λ −η/2

,

which is more convenient for the QISM formalism, where λ is known also as a
spectral parameter. Although by a scaling λ → ηλ the parameter η can be omitted
it is useful to preserve it for the future discussions, e.g., of the quasiclassical limit
η → 0. Usually, one puts η = i to get real-valued λ for |z| = 1. The one-magnon
energy in terms of λ and η = i is E(λ ) = −4/(4λ 2 + 1), and the Bethe equations
(9.17) in terms of λ reads as follows:

(
λ j +η/2
λ j −η/2

)N

=
M

∏
k �= j

λ j −λk +η
λ j −λk −η

. (9.19)

It is instructive to mention two obvious algebras related to the isotropic Heisen-
berg spin chain: the rotational symmetry Lie algebra sl(2) of HXXX (9.6), (9.9), and
the group algebra C[SN ] of the symmetric group SN . We already remarked that the
expression of the hamiltonian density in terms of permutation operators (9.6) shows
that HXXX ∈ C[SN ]. There is also a much bigger dynamical symmetry algebra, the
so-called Yangian Y (sl(2)) [4] which includes all the observables of the model (see
Sect. 9.2).

Similar solution using the coordinate Bethe ansatz was constructed by R. Orbach
in 1958 [16] for the anisotropic Heisenberg spin chain

HXXZ =
N

∑
k=1

(
σ x

kσ
x
k+1 +σ y

kσ
y
k+1 +Δ(σ z

kσ
z
k+1 −1)

)
, (9.20)

where Δ ∈ (−∞,∞) is an anisotropy parameter. The only obvious symmetry of this
spin chain is the U(1) group with the Lie algebra generator Sz (9.9). The space of
states is also decomposed according to the eigenvalues of Sz

H =
N⊕

M=0

H 1
2 N−M. (9.21)

However, under a minor modification of the XXZ model hamiltonian (concerning
an appropriate boundary condition instead of the periodicity one, cf. Sect. 9.2) the
symmetry algebra is “similar” to the sl(2) one; it is the quantum algebra Uq(sl(2))
with three generators [8] (see also Sect. 7.4). As a second algebra of this XXZ model
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one has the Hecke algebra HN(q) instead of C[SN ]. Finally a dynamical symmetry
algebra for this model is the quantum affine algebra Uq(ŝl(2)) [17].

In the next section we solve the XXX and XXZ models by a pure algebraic ap-
proach using the quantum inverse scattering method (QISM). For this reason now
we write down only the spectrum of HXXZ and we consider the corresponding Bethe
equations for the quasimomenta with a different parameterization {μ j}M

1 ,

HXXZΨ({μ j}M
1 ) = EM({μ j}M

1 )Ψ({μ j}M
1 ), (9.22)

EM({μ j}M
1 ) =

M

∑
j=1

Δ 2 −1
Δ − cos2μ j

=
M

∑
j=1

(coshη)2 −1
coshη− cos2μ j

, (9.23)

(
sinh(μ j + 1

2η)
sinh(μ j − 1

2η)

)N

=
M

∏
k �= j

sinh(μ j −μk +η)
sinh(μ j −μk −η)

. (9.24)

We are using the standard parameterization of the anisotropy parameter Δ ,

Δ =
1
2
(q+q−1) = cosh(η), q = exp(η). (9.25)

We finish this introduction by recalling that integrable quantum spin chains are
closely related to exactly solved models of statistical mechanics on square lattice (à
la two-dimensional Ising model) [15]. The trace of the transfer matrix t(λ ), which
is the generating function of the integrals of motion of the spin system, leads to the
partition function Z of the corresponding lattice statistical model. The entries of the
R-matrix, a fundamental object of the QISM, are the Boltzmann weights of the local
configurations [13–15].

9.2 Algebraic Bethe ansatz (QISM)

In this section we review the QISM formalism. We obtain the eigenvectors (9.22),
the eigenvalues (9.23), and the quantization conditions (9.24) of the XXZ model,
and the corresponding ones of the XXX model, via an algebraic approach (algebraic
Bethe ansatz). This algebraic method is analogous to the treatment à la Dirac of the
quantum harmonic oscillator with creation and annihilation operators. We construct
a particular transformation converting the variables σαk into a new set of operators.
More precisely the aim is to transform the original spin 1/2 operators σαk (that are
local operators because they act only on the kth site) to a set of new nonlocal oper-
ators in H with peculiar algebraic properties independent from the number of sites
N. We denote these nonlocal operators by A(λ ),B(λ ),C(λ ),D(λ ). The hamiltonian
HXXX is expressed in terms of these operators, and by acting on the vacuum state Ω
with the creation operators B(λ j) we also construct its eigenstates. A similar scheme
holds also for the XXZ model.
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Next we briefly discuss the underlying dynamical symmetry algebras. These are
the Yangian Y (sl(2)) for the XXX model and the quantum affine algebra Uq(ŝl(2))
for the XXZ model. Deformations of the XXX and XXZ models obtained by twist-
ing of these dynamical symmetries are then discussed in Sect. 9.3.

9.2.1 QISM for the XXX model

The main object of the transformation from the local operators σk ∈ End(H ) to
the nonlocal ones A(λ ), B(λ ), C(λ ),D(λ ) ∈ End(H ) is an auxiliary operator: the
L-matrix. It is a 2×2 matrix on an auxiliary space. The matrix entries depend on the
local observables σαk at a given site k and on the spectral parameter λ . In the case
of the XXX model the L-matrix is

Lak(λ ) = λ I +
1
2
η∑

α
σα ⊗σαk =

⎛
⎜⎜⎝
λ +η/2 0 0 0

0 λ −η/2 η 0
0 η λ −η/2 0
0 0 0 λ +η/2

⎞
⎟⎟⎠ .

(9.26)
The indices a and k refer to the auxiliary space the matrices σα act and to the
quantum space C

2
k (a factor in the definition of H ). On the other factors of H the

Lak-matrix acts as the identity. The L-operator in (9.26) is written as a 4×4 matrix
in C

2
a⊗C

2
k and one can recognize the local operators σαk as 2×2 blocks of the 4×4

matrix.
Using the L-operator (9.26) a new set of variables (operators in the Hilbert space

H (9.10) depending on the parameter λ ) is introduced by an ordered product of
Lak(λ ) as 2×2 matrices on the auxiliary space C

2
a,

T (λ ) := LaN(λ )LaN−1(λ ) . . .La1(λ ).

This new operator T (λ ) is the QISM monodromy matrix [3–6]. It is a 2×2 matrix
in the auxiliary space Va � C

2. Its entries

T (λ ) =
(

A(λ ) B(λ )
C(λ ) D(λ )

)
(9.27)

are operators in H . They are the new nonlocal variables. The commutation relations
of these new operators A(λ ), . . . ,D(λ ) ∈End(H ) can be obtained from the local
relation for the L-operator at one site (see for example [6]):

R12(λ −μ)L1k(λ )L2k(μ) = L2k(μ)L1k(λ )R12(λ −μ), (9.28)

where the R-matrix is found from the previous equation to be

R(λ ) = λ I +ηP . (9.29)
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The R-matrix in (9.29) acts on the tensor product of two auxiliary spaces C
2
1 ⊗C

2
2.

Equation (9.28) involves operators on C
2
1 ⊗C

2
2 ⊗C

2
k , where C

2
k is the space of spin

quantum states at site k. The operators R and Lak are understood to act in C
2
1 ⊗C

2
2 ⊗

C
2
k via the embeddings

R12(λ −μ) = R(λ −μ)⊗1 , L2k(μ) = 1⊗Lak(μ) ,

and similarly L1k(λ ) acts as Lak(λ ) on C
2
1⊗C

2
k and as the identity on the remaining

factor C
2
2,L1k(λ ) = P12L2k(λ )P12.

Taking into account (9.5) one can see that the R-matrix (9.29) coincides with the
L-matrix (9.26) up to a shift of the spectral parameter

R(λ ) = L(λ +
η
2

). (9.30)

Then by trivially shifting the spectral parameters λ and μ in (9.28) we obtain the
Yang–Baxter equation (YBE) [3]

R12(λ −μ)R13(λ )R23(μ) = R23(μ)R13(λ )R12(λ −μ) . (9.31)

This matrix equation is written in the auxiliary space End(C2
1⊗C

2
2⊗C

2
3), and R12 :=

R ⊗ I, R23 := I ⊗ R, R13 := P12R23P12. The solution (9.29) is called the Yang
R-matrix and there is an obvious extension of it to higher dimensional spaces C

n ⊗
C

n as the n2 ×n2 matrix R(λ ) = λ I +ηP which also satisfies the YBE (9.31).

The commutation relation for the L-matrix (9.28) induces the commutation rela-
tions for the monodromy matrix T (λ ). These latter have the same form [3–7]

R12(λ −μ)T1(λ )T2(μ) = T2(μ)T1(λ )R12(λ −μ), (9.32)

where a convenient notation for tensor products is used T1(λ ) := T (λ )⊗ I, T2(μ) =
I⊗T (μ) [3, 4], see also (7.19) and (7.20). One can extract 16 commutation relations
for the entries of T (λ ) (see e.g. [13]). We will use only few of them (the entries 13,
34, and 14) to algebraically construct the eigenvectors of the hamiltonian HXXX :

A(λ )B(μ) = f (λ −μ)B(μ)A(λ )+g(λ −μ)B(λ )A(μ), (9.33)

D(λ )B(μ) = f (μ−λ )B(μ)D(λ )+g(μ−λ )B(λ )D(μ), (9.34)

B(λ )B(μ) = B(μ)B(λ ), (9.35)

where f (λ − μ) = (λ − μ −η)/(λ − μ), g(λ − μ) = η/(λ − μ). Multiplying the
RTT-relation (9.32) by R−1

12 (λ − μ) and taking the trace over two auxiliary spaces
one gets the commutativity property of the transfer matrix t(λ ),

t(λ ) := trT (λ ) = A(λ )+D(λ ), t(λ )t(μ) = t(μ)t(λ ). (9.36)
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The transfer matrix t(λ ) is a generating function of integrals of motion. Due to the
regularity property of the Yang R-matrix

R(λ ;η)
∣∣
λ=0 = ηP (9.37)

(that in terms of the L-matrix reads L(λ )
∣∣
λ=η/2 = ηP, where P is the permutation

operator (cf. (9.5))) we have that t(λ )
∣∣
λ=η/2 is proportional to the shift operator U

(9.12). Using the obvious property d
dλ L(λ ) = I it can then further be shown that the

logarithmic derivative of t(λ ) at the point λ = η/2 yields the hamiltonian,

HXXX � d
dλ

log t(λ )
∣∣
λ=η/2, (9.38)

where � stands for equality up to a proportionality factor and a constant additive
term (proportional to N). The transfer matrix t(λ ) is the generating function of the
mutually commuting integrals of motions In = dn

dλ n log t(λ )
∣∣
λ=η/2. These integrals

are local densities (a natural and desirable physical property) in the sense that In is
a sum of operators each of which acts nontrivially at no more than n+1 neighboring
sites of the lattice.

We have seen that the hamiltonian can be written in terms of the A(λ ) and D(λ )
operators. On the other hand the operators B(λ ), for different values of λ , gener-
ate the eigenvectors of the hamiltonian. They act on the vacuum state (the highest
weight vector) Ω defined in (9.8):

Ω =
N⊗
1

e(+)
m , σ z

me(±)
m = ±e(±)

m , σ+
m e(+)

m = 0, σ−
m e(+)

m = e(−)
m ,

as creation operators for magnons. In order to show that they are creation operators
we first observe that

C(λ )Ω = 0, A(λ )Ω = aN(λ )Ω , D(λ )Ω = dN(λ )Ω ,

where aN(λ ) = (λ + η
2 )N , dN(λ ) = (λ − η

2 )N . This follows from the upper trian-
gular form of the L-matrix on Ω and by recalling the expression of the monodromy
matrix T (λ ) in terms of the L(λ ) matrices. Next, from the quadratic relation (9.33)
for A(λ ) and B(μ), we have

A(λ )
M

∏
j=1

B(μ j) =
M

∏
j=1

f (λ −μ j)B(μ j)A(λ )

+
M

∑
k=1

g(λ −μk)B(λ )
M

∏
j �=k

f (μk −μ j)B(μ j)A(μk), (9.39)

and a similar relation for D(λ ) and the product of B(μ j). The sum of these relations
acting on the vacuum Ω gives the eigenvector (9.16) of the transfer matrix t(λ )
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Ψ({μ j}M
1 ) =

M

∏
j=1

B(μ j)Ω ,

t(λ )
M

∏
j=1

B(μ j)Ω = Λ(λ |{μk}M
1 )

M

∏
j=1

B(μ j)Ω , (9.40)

under the condition that the parameters μk satisfy the Bethe equations (k = 1, . . . ,M)

aN(μk)
dN(μk)

=
M

∏
j �=k

f (μ j −μk)
f (μk −μ j)

. (9.41)

This condition yields the vanishing of “unwanted terms” containing the opera-
tor B(λ ) and the operators A(μk),D(μ j) that as a result of the commutation rela-
tions (9.39) have arguments different from μ j and λ , respectively.

The eigenvalue of the transfer matrix t(λ ) is

Λ(λ |{μk}M
1 ) = aN(λ )

M

∏
j=1

f (λ −μ j)+dN(λ )
M

∏
j=1

f (μ j −λ ).

This construction of the eigenvectors of quantum integrable models was coined as
the algebraic Bethe ansatz [3].

We conclude by observing that the eigenstates Ψ =
M
∏
j=1

B(μ j)Ω , M ≤ [N/2]

(where [N/2] stands for integer part of N/2) are highest weight vectors for the global

symmetry algebra sl(2) with generators Sα = 1
2

N
∑

n=1
σαn (cf. (9.9)),

S+Ψ(μ1, . . . ,μM) = 0 , SzΨ(μ1, . . . ,μM) =
(

N
2
−M

)
Ψ(μ1, . . . ,μM) . (9.42)

The proof is purely algebraic and follows from the RTT-relation and the asymptotic
behaviors of the monodromy matrix and of the R-matrix [18],

T (λ ) = λNI +ηλN−1∑
α
σαa ⊗Sα +O(λN−2), (9.43)

R12(λ −μ) � I +
η
2λ

(
∑
α
σα1 ⊗σα2 + I

)
+O

(
1
λ 2

)
. (9.44)

Indeed, substituting these two asymptotics into the RTT-relation one gets
[((

1+
η
2λ

)
I +

η
λ ∑α

σα1 ⊗
(

1
2
σα2 ⊗1+1⊗Sα

))
,T2(μ)

]
= 0,

or
1
2

[σα ,T (μ)] = [T (μ),Sα ] ,
1
2

[σα ,T (μ)]xy = [T (μ)xy,S
α ] .
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The LHS is the commutator of 2×2 matrices while the RHS is the 2×2 matrix of
the commutators of the entries of T (μ) with the global spin generators, e.g.,

[Sz,B(μ)] = −B(μ),
[
S+,B(μ)

]
=

1
2

(A(μ)−D(μ)) .

These relations and (9.33) and (9.34) permit to prove the property (9.42) provided
the Bethe equations (9.41) are valid.

9.2.1.1 The Yangian Y (sl(2))

Consider the entries of the 2 × 2 monodromy matrix T (λ ) as abstract operators
obeying the RTT-relation, divide them by λ−N , and let N be arbitrarily big. We

denote by T (λ ) this series of 2×2 matrices, with coefficients t(n)
i j as abstract gen-

erators

T (λ )i j =
∞

∑
n=0

t(n)
i j

1
λ n , t(0)

i j = δi j. (9.45)

The RT T -relation (9.32) for T (λ ) defines an infinite-dimensional Hopf algebra, the
Yangian Y (gl(2)). One can define a q-determinant of the matrix T (λ ), it is central
in Y (gl(2)) and setting it to 1 gives the Yangian Y (sl(2)). The Yangian’s coproduct

Δ : Y (sl(2)) → Y (sl(2))⊗Y (sl(2)) on the generators t(n)
i j can be written in a

compact matrix form [19, 20]

Δ(T (λ )i j) =∑
k

T (λ )ik ⊗T (λ )k j. (9.46)

According to (9.43) the first nontrivial term t(1)
i j /λ yields generators of the Lie

algebra sl(2) and their coproduct is primitive

Δ(Sα) = Sα ⊗1+1⊗Sα .

Hence, the universal enveloping algebra U (sl(2)) is a Hopf subalgebra of the Yan-
gian U (sl(2)) ⊂ Y (sl(2)). This embedding permits to use twist elements found
in U (sl(2))⊗2 to perform twisting also of the Yangian (see below and [21]). The
Yangian Y (g) of a Lie algebra g is a deformation of the Lie algebra of polynomial
maps C→ g (or the current algebra g[t]), it can also be considered as a “degenerate”
version of the quantum affine algebra Uq(ĝ), this is a deformation of the central

extension L̂(g) of the loop algebra L(g) (the current algebra g[t, t−1]) [9, 20].

9.2.1.2 Higher spins and generalizations

One can take as L-operator the expression similar to (9.26) with an arbitrary repre-
sentation sαk of spin s (s = 1,3/2, . . .) instead of σαk [7]
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Lak(λ ) = λ I +
1
2
η∑

α
σαa ⊗ sαk . (9.47)

The main QISM relation (9.28) will be still valid with the same 4 × 4 R-matrix
(9.29). This gives us a generalization of the spin 1/2 XXX model to higher spins,
i.e., the isotropic spin s model XXXs [7].

More generally we can consider a solution R(λ ;η) of the YBE (9.31) which
has the regularity property R(λ ;η)

∣∣
λ=λ0

= ηP for some value λ = λ0 (cf. (9.37))
and construct a corresponding quantum integrable system. As before we define the
monodromy matrix T (λ ) as an ordered product of R-matrices (that are related to
L-matrices via a formula similar to (9.30)), then the first logarithmic derivative of
t(λ ) gives the hamiltonian H of a spin model

H � d
dλ

log t(λ )
∣∣
R(λ )=R(λ0) , (9.48)

where, similarly to (9.6),

H �
N

∑
n=1

Řnn+1 (9.49)

and

Řnn+1 = Pnn+1
d

dλ
R(λ )nn+1

∣∣
λ=λ0

. (9.50)

Higher logarithmic derivatives of t(λ ) give mutually commuting integral of mo-
tions.

For the XXX and XXZ models, with chains carrying an arbitrary representation
of spin s (s = 1,3/2, . . .), the constant Řnn+1 matrix (9.50) (that is proportional to the
permutation matrix Pnn+1 in the XXX model) satisfies the YBE in the braid group
form

Ř12Ř23Ř12 = Ř23Ř12Ř23 . (9.51)

9.2.2 Anisotropic XXZ spin chain

The QISM approach to the XXZ model is almost identical to the one discussed for
the XXX model. This is so because the corresponding L-matrices and the R-matrices
have the same structure and satisfy the same fundamental relations (9.28) and (9.31).
We explicitly have

LXXZ(λ ) =

(
sinh(λ +ησαk /2) sinh(η) σ−

k

sinh(η) σ+
k sinh(λ −ησαk /2)

)
, (9.52)
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R(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b(λ ) c(λ ) 0
0 c(λ ) b(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ , (9.53)

where the entries of the R-matrix are

a(λ ) = sinh(λ +η), b(λ ) = sinh(λ ), c(λ ) = sinh(η).

The hamiltonian of the XXZ model is given in (9.20). As in the XXX model the
ferromagnetic state Ω is the highest eigenstate of HXXZ , and the L-operator (9.52)
and the monodromy matrix T (λ ) onΩ have an upper triangular structure. Hence the
eigenstates, the Bethe equations (9.24), and the energy spectrum are produced by the
same algebraic procedure (algebraic Bethe ansatz) that consists of creating magnon
states by applying to Ω products of the mutually commuting operators B(μ j).

From the quantum group point of view it is more convenient to consider a non-
symmetric R-matrix instead of (9.53),

R(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b(λ ) c+(λ ) 0
0 c−(λ ) b(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ , c±(λ ) = exp(±λ ) sinhη . (9.54)

It is useful to prove directly that due to the commutativity of the R-matrix (9.53) with
the primitive coproduct of the Cartan generator h = σ z, [R(λ ), h⊗ 1 + 1⊗ h] = 0,
the transformed R-matrix

exp(xλ h1)R12 exp(−xλ h1)

(where h1 = h⊗1, h2 = 1⊗h) satisfies the YBE (9.31). To obtain (9.54) set x = 1
2 .

The R-matrices (9.53) and (9.54) give the same XXZ model with periodic bound-
ary conditions, but, as we now explain, it is the R-matrix (9.54) that is relevant for
the XXZ model with open boundary conditions and that is directly related to the
quantum algebras Uq(sl(2)) ⊂ Uq(ŝl(2)). This relation is given via a linear combi-
nation of constant R-matrices

R(λ ;q) = exp(λ )R(+)(q)− exp(−λ )R(−)(q), q = exp η ,

where R(−)(q) = (R(+)
21 (q))−1 := P (R(+)

12 )−1P . The constant R-matrix

R(+)(q) =

⎛
⎜⎜⎝

q 0 0 0
0 1 ω 0
0 0 1 0
0 0 0 q

⎞
⎟⎟⎠ , ω = q− 1

q
= 2sinhη (9.55)
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enters the RLL relations defining Uq(sl(2)), they are given in (7.63) and (7.64).
These relations can be used to prove the RLL relations (9.28) for the L- and
R-matrices with spectral parameter (9.52) and (9.53).

By multiplying the R(+)-matrix by the permutation P one gets the matrices

Řk(q) ≡ Řk k+1(q) := PR(+)
k k+1(q) , k = 1,2, . . . ,N −1 . (9.56)

They satisfy the braid group relation (9.51) and additionally the quadratic relation
[20]

Řk(q)2 =
(

q− 1
q

)
Řk(q)+ I. (9.57)

The N − 1 elements Řk(q) that satisfy (9.51) and (9.57) are the generators of the
Hecke algebra HN(q).

According to the theory of quantum groups the Hecke algebra HN(q) with gener-
ators Řk(q) (9.56) is the centralizer of the diagonal action of Uq(sl(2)) in the space
⊗N

1 C
2,

[Řk(q),ΔN(X)] = 0, X ∈ Uq(sl(2)) ,

where ΔN(X) is understood in the representation space ⊗N
1 C

2, and the diagonal
action is given by the N-fold coproduct map1 ΔN : Uq(sl(2)) → Uq(sl(2))⊗N ,

ΔN := (Δ ⊗ id ⊗ id ⊗ . . . id)(Δ ⊗ id ⊗ . . . id) . . .(Δ ⊗ id)Δ . (9.58)

Let us now consider the hamiltonian of the XXZ model with open boundary
conditions

HXXZ =
N−1

∑
k=1

(
σ x

kσ
x
k+1 +σ y

kσ
y
k+1 + coshη (σ z

kσ
z
k+1 −1)

)
+ sinh η (σ z

1 −σ z
N).

(9.59)
This open spin chain hamiltonian is explicitly Uq(sl(2)) invariant because its den-
sity is a cross Casimir of Uq(sl(2)),

c⊗2 (q) = 2(σ+
k σ

−
k+1 +σ−

k σ
+
k+1)+ cosh η σ z

kσ
z
k+1 + sinh η (σ z

k −σ z
k+1).

This expression, in accordance with (9.49), essentially coincides with the Hecke
algebra generator Řk(q) (9.56).

Finally we comment on the difference between open and closed (periodic)
boundary conditions for the XXX and XXZ models. In the XXX model the dif-
ference between open and closed boundary conditions is given by the element
ŘXXX

N1 (q) = PN1 = P1N , that belongs to the symmetry group SN , so that also HXXX

with periodic boundary conditions is an element of the group algebra C[SN ], and we

1 The map ΔN is the composition of N − 1 coproduct maps. For example, for N = 3 we have
Δ 3 = (Δ ⊗ id)Δ . Coassociativity of Δ (cf. (9.79)) then implies that Δ 3 = (id ⊗Δ)Δ ; similarly ΔN

is independent from the position of Δ in the tensor products (9.58).
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have Y (sl(2)) dynamical symmetry. The situation is different in the XXZ model.
Indeed in this case the hamiltonian with periodic boundary condition has together
with Řkk+1(q) the summand ŘN1(q). This latter addend does not belong to the Hecke
algebra. This explains why the open spin chain hamiltonian (9.59) is Uq(sl(2)) in-
variant while the closed spin chain hamiltonian with periodic boundary condition
(9.20) is not.

9.3 Twists and QISM

In this section we consider what kind of changes can be induced in integrable spin
chains using twist transformations of the related quantum groups.

We see that twists naturally arise when considering scaling limits, for example,
the XXX and XXZ models can be related by two inequivalent elementary scaling
transformations, and we propose a treatment of the relations obtained via the second
scaling limit in terms of a corresponding twist. This leads to the example of the so-
called jordanian twist.

In Sect. 9.3.2 on the other hand we consider an abelian twist and study the
changes in the hamiltonian of the XXZ model with periodic boundary conditions
under this twist transformation.

Section 9.3.3 first details the relation between quantum groups and integrable
systems. We then see how, in the case of open spin chains, the twisting of a quantum
group leads to the corresponding twisting of the integrable system. Contrary to the
case of closed spin chains considered in Sects. 9.3.1 and 9.3.2, the original open
spin chain hamiltonian H and the twisted ones H(t) can be easily compared, they
are related by a similarity transformation.

In Sect. 9.3.4 we consider another example of twist (coboundary twist) this is
in general a trivial twist. Under scaling transformations these coboundary twist can
however become nontrivial, this is yet another way to obtain (extended) jordanian
twists and their related integrable systems.

Scaling limit XXZ → XXX . It is easy to get the isotropic XXX spin chain from the
anisotropic XXZ one via a scaling limit ε → 0 of parameters

λ → ελ , η → εη , q → 1+ εη , sinh(λ −η) → ε(λ −η), coshη → 1+
1
2
ε2η2.

(9.60)
The hamiltonians (9.20), eigenvectors, and Bethe equations (9.24) are clearly con-
nected in this limit ε → 0, as well as R-matrices (9.53) and (9.29),

RXXZ(ελ ;εη) → ε(λ I +ηP) = εRXXX (λ ;η), (9.61)

and the algebraic Bethe ansatz.
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Scaling limit XXZ → XXXξ . A nontrivial scaling limit (contraction) of the XXZ
model is obtained by applying additionally a similarity transformation with the ma-
trix M(ξ ) = exp(ξσ+) ∈ Mat(C2)

M(ξ ) =
(

1 ξ
0 1

)
(9.62)

to the main objects of the QISM. The YBE is obviously invariant with respect to
the factorized similarity transformations of its solution R → AdM⊗2R [7]. Then the
scaling limit (9.60) with a singular behavior of the parameter ξ with respect to ε:
ξ → ξ/ε yields a deformed XXX spin chain. One obtains the closed spin chain
hamiltonian

AdM(ξ/ε)⊗NHXXZ → HXXXξ := HXXX +
N

∑
n=1

(
ξ 2σ+

n σ+
n+1 +ξ (σ+

n −σ+
n+1)

)
.

(9.63)
It is a hamiltonian of a deformed XXX model with ξ as the deformation parameter
[21]. The similarity transformation does not change the spectrum of HXXZ . Thus
in this limit one produces the standard spectrum of the XXX model, although the
hamiltonian is now non-hermitian and it depends on ξ . This change of hermitic-
ity comes from the triangularity of the matrix M. In the scaling limit we get ad-
ditional degeneracy of the spectrum, and some jordanian cells appear. Here is a
two-dimensional example of this phenomenon (ξ → ξ/(x2 − x1), x2 → x1)

AdM(ξ ) ·
(

x1 0
0 x2

)
=
(

x1 ξ (x2 − x1)
0 x2

)
−→

(x2 → x1)

(
x1 ξ
0 x1

)
.

The eigenvector
(

1
0

)
survives, while the second eigenvector becomes an adjoint

eigenvector.
After this transformation the limiting R-matrix and L-operators, similarly to the

hamiltonian (9.63), have also extra terms

AdM(ξ/ε)⊗2RXXZ(ελ ;εη) → λR(ξ )+ηP, (9.64)

(AdMa(ξ )⊗AdMk(ξ ))L(XXZ)
ak (λ ) → L(XXX)

ak (λ ;ξ ), (9.65)

where

R(ξ ) = I +ξ
(
σ+ ⊗σ z −σ z ⊗σ+ +ξσ+ ⊗σ+) (9.66)

= exp(ξσ+ ⊗σ z)exp(−ξσ z ⊗σ+)

and

L(XXX)
ak (λ ;ξ ) = λ I +

η
2 ∑α

(σαa ⊗σαk ) (9.67)

+ξ (λ −η/2)
(
σ+

a ⊗σ z
k −σ z

a ⊗σ+
k +ξσ+

a ⊗σ+
k

)
.
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9.3.1 Jordanian twist

The constant R(ξ )-matrix satisfies the YBE without spectral parameter. It is a
triangular R-matrix: R12(ξ )R21(ξ ) = 1. It is an image of a universal R-matrix
R = F21F

−1
12 obtained by means of a jordanian twist of the universal enveloping

algebra U (sl(2)):

F ( j) = exp

(
1
2

h⊗ ln(1+2ξX+)
)

, w := ln(1+2ξX+), (9.68)

where h, X± are the generators of the Lie algebra sl(2): [h,X±] =±2X±, [X+,X−] =
h. Let us write down for completeness the twisted coproduct maps for the genera-
tors:

Δt(h) := F ( j)Δ(h)(F ( j))−1 = h⊗ e−w +1⊗h,

Δt(X+) = X+ ⊗1+1⊗X+ +2ξX+ ⊗X+ = X+ ⊗ ew +1⊗X+,

Δt(w) = w⊗1+1⊗w,

Δt(X−) = X−⊗ e−w +1⊗X− +ξh⊗he−w +ξ
(

h− 1
2

h2
)
⊗ (e−w − e−2w).

Introducing the new combination X̃− = X− − 1
2ξh2 one obtains a quasiprimitive

coproduct also for X̃−

Δt(X̃−) = X̃−⊗ e−w +1⊗ X̃−.

In the spin 1/2 representation we have F( j) = exp(ξσ z ⊗ σ+) and R12(ξ ) =
exp(ξσ+ ⊗σ z)exp(−ξσ z ⊗σ+).

The scaling limit procedure XXZ → XXXξ does not lead to fully solve the XXXξ
model because in this limit many eigenstates of the XXZ model become singular

(e.g., Ω− = ⊗ke(−)
k ). New ones have therefore to be found. The study of this closed

spin chain quantum integrable system via its R-matrix (9.64) is nontrivial because
the form of (9.64) is more complicated than that of (9.61). In particular the commu-
tation relations among the operators A(λ ), . . . ,D(λ ) are more involved. Although
the monodromy matrix T (λ ) still has an upper triangular structure when acting on

the ferromagnetic state Ω = ⊗N
1 e(+)

k (9.8), and therefore the operator B(λ ) is still a
creation operator, the algebraic Bethe ansatz is quite elaborated.

Deformations of integrable spin systems related to higher rank Lie algebras, e.g.,
gl(n) or Lie superalgebras gl(m|n), can be similarly obtained using extended jorda-
nian twists [22, 23]. In particular, a generalization of the isotropic XXX model to
the case of gl(n) is given by the hamiltonian

Hgl(n) =
N

∑
m=1

Pmm+1 =
N

∑
m=1

n

∑
i, j=1

e(m)
i j ⊗ e(m+1)

j i , (9.69)
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where Pmm+1 is the permutation operator of C
n
m ⊗C

n
m+1 while e(m)

i j are the basic

matrices on C
n
m (with matrix entries (e(m)

i j )
kl

= δikδ jl). An extended jordanian twist,
e.g., for n = 3, is [22]

F
( jext ) = exp(2ξE12 ⊗E23 exp(−w13))exp

(
1
2

h⊗ ln(1+2ξE13)
)

, (9.70)

w13 = ln(1+2ξE13)),

where h,Ei j are the generators of sl(3), [h,Ei j] = (δ1i +δ3 j)Ei j , [E13,E31] = h.

9.3.2 Abelian twist

One can add more parameters to the R-matrix of the XXZ model (9.54) using an
abelian twist related to the quantum algebra Uq(sl(2)) ⊂ Uq(ŝl(2)). The generator
h of Uq(sl(2)) still has the primitive coproduct:

Δ(h) = h⊗1+1⊗h := h1 +h2 ∈ Uq(sl(2))⊗2.

Extending this quantum algebra by a central element κ which has also the primitive
coproduct Δ(κ) = κ1 +κ2, a twist with the carrier space in abelian Lie subalgebra
C[κ, h] ⊂ Uq(gl(2)) can be constructed (i.e., an abelian twist)

F (ab) = exp(θ(κ⊗h−h⊗κ)) . (9.71)

The transformation of the universal R-matrix is

R(t) = F21RF −1
12 = F −1

12 RF −1
12 , (9.72)

the last equality is due to the property F21 = F −1
1 2 valid for the twist (9.71). Spin

1
2 representations with fixed central elements κ = 1

4 for both representation spaces
C

2 ⊗C
2 yield

R(t)
12 (λ ) = exp

(
θ
4

(σ z
1 −σ z

2)
)

R12(λ )exp

(
θ
4

(σ z
1 −σ z

2)
)

. (9.73)

One explicitly obtains

R(t)(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b+(λ ) c+(λ ) 0
0 c−(λ ) b−(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ ,

b±(λ ) = p±1sinh(λ ), p = exp(θ) ,

c±(λ ) = exp(±λ ) sinhη .

(9.74)
The matrix structure of the R(t)-matrix is the same as that of (9.54), just the diagonal
elements are different. Similarly the L-operator has the same matrix structure. Hence
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the algebraic Bethe ansatz is also the same. However, since different functions enter
relations (9.33) and (9.34), the result is a change of the Bethe equations (9.24) that
now read (

1
p

sinh(μ j + 1
2η)

sinh(μ j − 1
2η)

)N

=
M

∏
k �= j

sinh(μ j −μk +η)
sinh(μ j −μk −η)

. (9.75)

Also the hamiltonian depends on the twist parameter p = exp(θ),

HXXZp = 2
N

∑
k=1

((
pσ+

k σ
−
k+1 +

1
p
σ−

k σ
+
k+1

)
+

1
2

coshη(σ z
kσ

z
k+1 −1)

)
. (9.76)

This is the hamiltonian of the closed XXZp spin chain, and it is hermitian for |p|= 1.
References on this model studied as spin chain and as 2d classical statistical system
(6 vertex model) can be found in [24].

The method of constructing new quantum integrable systems via an abelian twist
is quite general. There are quantum integrable spin chains corresponding to higher
rank (r > 1) Lie algebras, e.g., gl(n), or Lie superalgebras, e.g., gl(m|n). Then one
has an r-dimensional abelian Lie subalgebra, with generators {h j}r

1, and one can
construct an abelian twist with more parameters to deform the spin model [25]

F (ab) = exp
(
∑θ i jhi ⊗h j

)
. (9.77)

This twist element is similar to the one used to construct the θ -deformed Poincaré
algebra (see [26] and previous chapters).

9.3.3 Generalities on twist transformations

The algebraic structure underlying the main operators entering the QISM: the R-
matrix, the L-operator, and the monodromy matrix T (λ ), is that of a quantum group.
In quantum groups a key role is played by the universal R-matrix R and by the co-
product map Δ . By representing the universal R-matrix and by using the coproduct
map Δ one obtains the R-, L-, and T - operators. By twisting the quantum group
coproduct map Δ one obtains a new (twisted) quantum group and can consider the
corresponding changes of the R-matrix, the L-operator, and the monodromy matrix
T (λ ) that in turn define a new integrable system.

Given a quasitriangular Hopf algebra U (m,Δ ,S,R) with product m, coproduct
Δ , and antipode S, and a twist F ∈ U ⊗U , the corresponding twisted quasitrian-
gular Hopf algebra has a transformed coproduct map Δt , for all a ∈ U ,

Δt(a) = FΔ(a)F−1 (9.78)

(cf. Chap. 8.2.1). Coassociativity of this deformed coproduct, i.e.,

(Δt ⊗ id)Δt = (id ⊗Δt)Δt (9.79)
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is implied by the Drinfel’d twist equation

F12(Δ ⊗ id)F = F23(id ⊗Δ)F . (9.80)

The corresponding twist-transformed universal R-matrix is

R(t) = F21RF−1. (9.81)

Defining Δ op (and similarly Δ op
t ) by Δ op

12 (a) = Δ21(a) for all a ∈U , we have, again
for all a ∈ U , Δ op

t (a) = F21Δ op(a)F−1
21 , and

F21RΔ(a)F−1 = F21Δ op(a)RF−1.

These two last relations imply the intertwining relation (for all a ∈ U )

R(t)Δt(a) = Δ op
t (a)R(t).

In order to obtain the R-, L-, and T - operators from the universal R-matrix and
the coproduct Δ we consider the universal L-matrix. It is an image of the universal
R-matrix in a representation ρ corresponding to an auxiliary space Va

L = (ρ⊗ id)R, or L (t) = (ρ⊗ id)F21RF−1.

The L-matrix of the previous sections is then obtained by representing L on the
vector space Vk. The monodromy matrix T of a chain with N sites

TN = LaNLaN−1 . . .La1

can be obtained by the action of the N-fold coproduct ΔN : U → U ⊗N as defined
in (9.58). In fact taking into account the factorization property of the universal R-
matrix [9],

(id ⊗Δ)R = R13R12,

we have
(id ⊗Δ 3)R := (id ⊗Δ ⊗ id)(id ⊗Δ)R = R14R13R12 ,

hence,

TN = (ρ⊗ id)ΔNR = (ρ⊗ id)RaNRaN−1 · · ·Ra1 ∈ End(Va)⊗U ⊗N , (9.82)

TN = (id ⊗ρ⊗N)TN . (9.83)

Now we consider twist transformations of the monodromy matrix. From (9.82)
we see that it is obtained by twisting the universal R-matrix and the N-fold coprod-
uct ΔN . From the definition of twisted coproduct we have the relation for 3-fold
coproducts, for all a ∈ U ,
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Δ 3
t (a) = (Δt ⊗ id)Δt(a) = F12F(12)3Δ 3(a)F−1

(12)3F
−1
12 ,

here F(12)3 = (Δ ⊗ id)F . The N-fold coproduct ΔN : U → U ⊗N is also similarly
transformed by the twist

ΔN
t = F (N)ΔN(F (N))−1, (9.84)

where
F (N) := F12F(12)3 · · ·F(12...N−1)N ,

and F(123)4 = (Δ 3 ⊗ id)F , and similarly for all other factors up to F(12...N−1)N =
(ΔN ⊗ id)F .2

It is instructive to prove that the relation Ř(t) = FŘF−1, defining the twist-
transformed Ř-matrix (cf. (9.81) and (9.50)), in U ⊗N reads

Ř
(t)
nn+1 = Fnn+1Řnn+1(Fnn+1)−1 = F (N)Řnn+1(F (N))−1 . (9.85)

The last equality shows that the operator Fnn+1 that defines the similarity transfor-
mation Řnn+1 → Fnn+1Řnn+1(Fnn+1)

−1, and that is local because it depends on
the sites n and n+1, can be replaced by the operator F (N) that is global because it
is independent from the positions n and n+1.

Equality (9.85) allows to compare the hamiltonian H(t) of an open spin chain
described by a twisted quantum group to the untwisted one H. Recalling (9.48) we
see that

H(t) =
N−1

∑
n=1

Ř(t)
nn+1 = F(N)

(
N−1

∑
n=1

Řnn+1

)
(F(N))−1 = F(N) H (F(N))−1 , (9.86)

where H(t),Fnn+1, and Řnn+1 are written in a representation. Contrary to the closed
spin chains of Sects. 9.3.1 and 9.3.2, we see that the open spin chain hamiltonian
H(t) has the same spectrum as H and that its eigenvectors are transformed via F(N).

9.3.4 Coboundary twists and the jordanian deformation

Coboundary twists are twists constructed with any invertible element u of a Hopf
algebra U :

F (cob) = (u⊗u)Δ(u−1).

The Hopf algebra constructed with a coboundary twist has the coproduct Δ̃ =
F (cob)Δ(F (cob))−1 and is isomorphic (as a Hopf algebra) to the original one. They
are in fact related by the similarity transformation ϕu : U → U , a → uau−1,

2 Due to the Drinfel’d twist equation (9.80), the N-fold twist F (N) admits similar and equivalent
factorizations with a different order of the N −2 coproduct maps acting on different factors of F .
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Δ̃ ◦ϕu = (ϕu ⊗ϕu)◦Δ .

The universal R-matrix of U (if U is quasitriangular) is transformed with this twist
just by the similarity transformation

R → Ad(u⊗u)R.

We now exploit the very definition of coboundary twist and concoct a coboundary
twist of the Hopf algebra Uq(sl(2)) given by an element u(q, t) ∈ Uq(sl(2)) (where
t is a parameter that we later relate to ξ ), such that

F (cob)(q, t) = (u⊗u)Δ(u−1) ∈ Uq(sl(2))⊗Uq(sl(2))

is nonsingular in the limit q→ 1, while the corresponding element u(q, t) is singular.
This coboundary twist in the q → 1 limit is no more a coboundary and leads to the
jordanian twist F ( j). Hence, instead of performing a singular contraction of the
XXZ model, one can apply the appropriate twist transformation to the whole QISM
machinery of the XXZ model and then consider the limit q → 1. An element u(q, t)
with these properties is [27]

u(q, t) = expq2

(
t

1−q2 X+
)

, (9.87)

where

expq(x) :=
∞

∑
n=1

xn

(n)q!
= exp

(
∞

∑
n=1

(1−q)n−1 xn

n(n)q

)
, (expq(x))

−1 = expq−1(−x),

(9.88)
and (n)q := (1−qn)/(1−q), (n)q! := (1)q(2)q · · ·(n)q.

Since the generator X+ of the quantum algebra Uq(sl(2)) has the following co-
product

Δ(X+) = X+ ⊗1+K−2 ⊗X+,

then the coboundary twist element is

F (cob)(q) = (u(q)⊗u(q))Δ(u(q)−1) (9.89)

= expq2

(
t

1−q2 X+
)
⊗ expq2

(
t

1−q2 X+
)

expq−2

(
− t

1−q2 (X+ ⊗1+K−2 ⊗X+)
)

.

We now use a functional equation for the q-exponential of a sum of noncommuting
arguments. Provided that yx = qxy we have

expq(x+ y) = expq(x)expq(y).
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Recalling the Uq(sl(2)) commutation relations K−2X+ = q−2X+K−2 (cf. (7.39)
and (7.40)) we can then factorize the third q-exponential in (9.89). Then the expres-
sion for F (cob)(q) simplifies to

F (cob)(q) = expq2

(
t

1−q2 1⊗X+
)

expq−2

(
− t

1−q2 (K−2 ⊗X+)
)

.

Using the representation of the q-exponential as standard exponential of the
q-dilogarithm (9.88), the realization K2 = qh, and commutativity of the elements
1⊗X+, K−2 ⊗X+, one can show that there are no singular terms in F (cob)(q) in
the limit q → 1. The explicit expression is

lim
q→1

F (cob)(q) = exp

(
∞

∑
n=1

−1
2

h⊗ (tX+)n

n

)
= exp

(
1
2

h⊗ ln(1− tX+)
)

,

which gives for t = −2ξ the jordanian twist F ( j) (9.68).

9.4 Conclusions

By transforming a given quantum group with a twist we obtain a new quantum
group with universal R-matrix changed according to F21RF−1. As a result there is
a corresponding change in the integrable model associated with the initial quantum
group and its representations. It was demonstrated that depending on the properties
of the twist the energy spectrum for closed spin chains can be preserved (XXXξ
model (9.63)) or changed (asymmetric XXZp model (9.76)). In both these cases the
structure of the eigenstates is also twist dependent. On the other hand, for an open
spin chain the twisting procedure simply generates a similarity transformation of
the hamiltonian and its eigenstates.

Finally all the new quantum integrable systems obtained by twisting a given
quantum integrable system share the same amount of symmetry as the initial one
because the amount of symmetry in a group or in a twisted deformation of the group
is the same.
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Chapter 10
The Noncommutative Geometry of Julius Wess

Paolo Aschieri

Julius Wess first work on noncommutative geometry dates June 1989. Since then
he gradually became more and more interested and involved in this research field.
We would like to describe briefly his interests, motivations, and main contributions,
which could be divided into four periods. Therefore, we shall trace a short account
of his last 18 years of scientific activity and hence of an approach to the subject that
has become a reference point for the scientific community.

Physicists’ renewed interest in the late 1980s in noncommutative structures was
driven by the emergence of quantum groups [1–3]. These deformed structures arose
from solving quantum integrable systems with algebraic methods [4] (see Chap. 9)
and were also independently studied in the context of C∗-algebras [5]. They found
applications in two-dimensional conformal field theories [6] and in constructing new
invariants of knots and links and three-dimensional manifolds [7, 8].

Julius Wess initial studies (1989–1994) concentrated on quantum groups. One
can recognize three parallel investigations:

• Quantum 2× 2 matrices and their Lie algebras [9–11]. These are the easiest in-
stances of quantum groups. These studies lead to a classification of deformations
of GL(2), and in particular to the description of the Jordanian deformations that
as far as we know was first introduced in [12].

• Differential calculus on quantum planes and groups. Quantum matrix groups
can be seen as symmetries of noncommutative planes, as initially advocated by
Manin [13]. Wess and Zumino developed this viewpoint and studied the dif-
ferential calculus on the n-dimensional noncommutative planes covariant under
the action of the canonically deformed GLq(n) quantum group [14]. In [11] the
differential geometry of the two parameter deformation of the group manifold
GLp,q(2) was studied. Thus the first examples of noncommutative differential ge-
ometry were considered. Independent similar results were obtained by Woronow-
icz [15, 16]. These results developed differential geometry by using methods that
are different from those advocated by Connes [17].
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• The construction of the quantum Lorentz Lie algebra as symmetry algebra of the
complex quantum spinor space [18, 19]. Then by developing the q-differential
calculus on the q-Minkowski space (associated with the quantum spinor space),
i.e., by finding the generators of translations (partial derivatives), Ogievetsky,
Schmidke, Wess and Zumino [20] were able to construct a q-deformed Poincaré
Lie algebra (i.e., to construct a one parameter family q ∈R of Hopf algebras) and
study a hermitian Laplace operator.

A second investigation period (1992–2000), overlapping with the previous one,
was dedicated to representation theory and noncommutative quantum mechanics. A
deformation of the two-dimensional phase space was studied [21]. This deformation
is derived from a noncommutative differential calculus on the real line, where the
momentum operator is obtained from the partial derivative operator i∂x. The rep-
resentation of this deformed Heisenberg algebra shows a lattice-like structure, the
eigenvalues of the (normalized) position operator as well as those of the momen-
tum operator being ±qn, n integer, q ≥ 1 [21, 22]. Another aspect of this investiga-
tion is that once the free Hamiltonian in noncommutative phase space H = 1

2 P2

is rewritten in terms of the usual canonical variables x, p, with [x, p] = ih̄, we
obtain a Hamiltonian H(x, p) describing an interacting system. In this way a dy-
namical system that may be highly nontrivial if thought in commutative spacetime
(and undeformed phase space) becomes simple if analyzed in the noncommutative
Hamiltonian quantum mechanics framework [23], see also [24, 25]. We will see
that this idea is later applied to noncommutative gauge theories. Similar methods
have been applied to study the q-deformed quantum mechanical oscillator and its
deformed dynamical symmetry algebra [26, 27].

The natural following step in this research was to study the representation of
the q-deformed Poincaré algebra constructed in [20]; this was initiated in [28] and
further investigated, in particular, in [29, 30]. There also the noncommuting coordi-
nates of q-Minkowski space are represented, and the eigenvalues of the coordinates
operators are found: they are discrete and therefore they show a lattice structure of
q-noncommutative spacetime.

A related issue is the deformed statistics of identical particles on noncommutative
space, this was investigated in [31, 32].

In the years 1997–1999 it was understood that noncommutative gauge theories
arise in field theory limits of M-theory and string theory, see [33] and reference
therein. In [33] a map, known as Seiberg–Witten map (SW map), between commu-
tative and noncommutative gauge theories was established, under this map a usual
gauge transformation is mapped into a noncommutative gauge transformation, in
this way gauge equivalent classes [Aμ ] of the usual gauge potential Aμ on commuta-
tive spacetime are mapped into gauge equivalent classes [Âμ ] of the gauge potential
Âμ on noncommutative spacetime (noncommutativity [xμ ,xν ] = iθμν being related
to the nonvanishing of the two form B). Under this mapping a complicated gauge
theory action on commutative space can have a much nicer expression (and hence in-
terpretation) if written in terms of the gauge potential Âμ ; the physical content being
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the same since only gauge equivalence classes are physical. This is the case, for ex-
ample, of noncommutative electromagnetism whose action is simply

∫
F̂μν F̂μν and

captures the low energy physics on a D-brane in the presence of a B-field. These
findings triggered a huge amount of literature on the subject of noncommutative
field theories. Noncommutativity in this context is mainly implemented via a star
product.

Wess and his group in Munich were independently working on the subject of non-
commutative gauge theories and (incorporating the results of [33]) they wrote with
Madore a first influential paper on the subject [34]: in noncommutative gauge theo-
ries the gauge potential naturally arises from considering covariant noncommutative
coordinates (rather than from considering covariant derivatives). Noncommutativity
is not limited to the case [xμ ,xν ] = iθμν with θμν constant; a SW map is considered
for more general commutation relations. This noncommutative gauge theory pro-
gram developed and widened in a series of papers spanning the years 2000–2004.

• The SW map was used to consider noncommutative gauge theories with arbitrary
gauge group (e.g., SU(n) or SO(n)) and matter fields in arbitrary representa-
tions, thus overcoming the initial restriction to U(n) gauge theories and to matter
fields in the fundamental representation of U(n). This was achieved by allowing
the noncommutative fields to be valued in the universal enveloping algebra Ug
rather than in the Lie algebra g. Now Ug is infinite dimensional; however, by con-
straining the noncommutative gauge potentials via the SW map, the degrees of
freedom remain the same as those of gauge theories on commutative space [35].
The SW map is also extended to matter fields and calculated by introducing the
useful consistency check of closure of noncommutative gauge transformations
[36] (see Chap. 4).

• In works with Jurčo and Schupp [37–39] the SW map for arbitrary (x-dependent)
noncommutativity θμν is understood by using Kontsevich formality map [40].
The same maps that lead to the construction of a star product associated with any
given Poisson tensor are used to construct the noncommutative gauge potential
Âμ and gauge transformation λ̂ from the commutative ones Aμ and λ . By study-
ing global properties of these noncommutative gauge theories, noncommutative
line bundles with noncommutative transition functions were formulated [41].

• The SW map method allows to expand order by order in powers of the non-
commutativity parameters θμν a noncommutative Yang–Mills theory minimally
coupled to noncommutative matter fields in terms of the corresponding com-
mutative fields; the result is the corresponding commutative Yang–Mills theory
at zeroth order in θμν plus interaction terms at higher order in θμν . These ex-
tra interactions, like for example contractions of the kind θFFF , respect usual
gauge symmetry and also noncommutative gauge symmetry. The vertices in-
volving the noncommutativity parameters θμν break usual Lorentz invariance
because θμν is frozen to a given value (it is not a dynamical field). These the-
ories have been shown to be anomaly free [42] if they are so at zeroth order
in θμν . Using this SW method, deformations of the standard model have been
obtained [43, 44]. These noncommutative actions are presently treated as effec-
tive actions; however, their renormalization properties are quite interesting. Pure
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noncommutative QED breaks renormalizality in an unexpectedly mild way [45–
47], hinting at some hidden symmetries; pure Yang–Mills theories at first order
in θμν are one-loop renormalizable and, adding an admissible extra interaction
term, this is also the case for Yang–Mills theories based on the standard model
gauge group [48, 49]. Phenomenological investigations followed [50, 51].

• Another example of noncommutative space is the κ-Minkowski spacetime. There
the commutator [xμ ,xν ] is linear in the coordinates [52, 53]. On this space the
κ-Poincaré quantum group [54] acts. Scalar and spinor field actions compati-
ble with this quantum symmetry were constructed in [55]. The SW method of
defining the noncommutative fields in terms of the commutative fields allows
here too to construct a noncommutative Yang–Mills theory invariant under non-
commutative gauge transformations. Then, as explained in [56] and in Chap. 5,
the usual Yang–Mills theory, plus new gauge-invariant interaction terms depend-
ing on the deformation parameter, is obtained by expanding the noncommutative
Yang–Mills action in power series of the deformation parameter and in terms of
the commutative fields.

The research period 2004–2007 could be seen as a synthesis of the first period
on quantum groups and the third one on noncommutative field theories where non-
commutativity is given by a �-product. As in [55, 56], it addresses the issues of
spacetime symmetries in noncommutative field theory (a main topic of this book).

The compatibility of the canonical commutation relations [xμ ,xν ] = iθμν with
a deformed (twisted) Poincaré algebra is discovered in [57] (see Chaps. 7, 8); this
conclusion was independently reached in [58], see also [59]. The development of the
results of [56] leads to the construction of field theories by implementing deformed
symmetry principles. As we explain in Chaps. 1, 3, 8, our deformation of the alge-
bra of diffeomorphisms for Moyal–Weyl noncommutative spacetime [xμ ,xν ] = iθμν
(θμν constant) leads to a deformed tensor calculus and to the construction of
θ -deformed Einstein general relativity [60]. In [61] the differential geometry of a
manifold equipped with an arbitrary �-product induced by a twist is considered and
developed using a global, coordinate independent formalism. The corresponding de-
formed Einstein general relativity is obtained. Similar techniques are then applied
in order to construct noncommutative gauge theories [62] (see Chaps. 1, 2), and
noncommutative supersymmetric theories [63]. See also [64] for twist techniques in
quantum field theory.

Julius Wess passed away while fully immersed in the development of this pro-
gram. Some of the topics he was pursuing or wanted to pursue together with his
collaborators, and that indeed are under investigation, are noncommutative gauge
theories from Kaluza–Klein reduction of noncommutative gravity; first-order for-
malism of noncommutative gravity and its coupling to matter fields, e.g., spinors;
conservation laws in noncommutative field theories, and in particular the covariant
conservation of the Einstein tensor and of the energy momentum tensor in non-
commutative gravity; the study of exact solutions of noncommutative gravity; the
study of models of twisted supersymmetric field theories; and the generalization
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of these noncommutative field theory constructions to the case of a wider class of
�-products associated with quasitriangular quantum group symmetries rather than
triangular ones.
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56. M. Dimitrijević, F. Meyer, L. Möller and J. Wess, Gauge theories on the κ-Minkowski space-
time, Eur. Phys. J. C36, 117 (2004), [hep-th/0310116]. 192

57. J. Wess, Deformed coordinate spaces; derivatives, in Proceedings of the BW2003 Workshop,
Vrnjacka Banja, Serbia, 2003, 122–128, World Scientific (2005), [hep-th/0408080]. 192

58. M. Chaichian, P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpreta-
tion of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett.
B604, 98 (2004), [hep-th/0408069]. 192

59. R. Oeckl, Untwisting noncommutative Rd and the equivalence of quantum field theories,
Nucl. Phys. B 581, 559 (2000), [hep-th/0003018]. 192
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Phys. Rev. D 75, 105022 (2007), [hep-th/0701078]. 192



Index

Adjoint action, 146, 147
Algebra

Banach, 91
C∗, 91
over C, 128
canonical deformation, 6
commutative, 93
over a commutative ring, 130
κ-deformation, 7
deformed algebra of differential operators,

11, 41
deformed algebra of functions, 9
κ-deformed Poincaré, 76
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Lie bracket, 144
�, 147
deformed, 13, 16

Lie derivative L �, 145, 148, 153
L-matrix, 171, 176

Measure function, 83
Metric tensor, 158
Module, 94, 127

finite, 95
projective, 95

Monodromy matrix, 171, 174
Morita equivalence, 99

among noncommutative tori, 100
Moyal product, 8, 104

Noncommutative
coordinates, 4, 5
standard model, 69
torus, 100, 107
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Seiberg-Witten map, 66
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UV/IR mixing, 65

Vacuum state, 173
Vectorfields

�-Lie algebra, 146
Vectorfields Ξ�

module over A�, 140
Vector space, 127
Vielbein, 48

�-determinant of, 49

Weyl map, 103
inverse, see Wigner map

Wigner map, 104

XXX model
deformed, 180

XXZ model, 176

Yang-Baxter equation, 115, 118, 172
Yangian, 169
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